通过激光粉末床熔融技术制造具有梯度无序晶胞的多孔 Ti-6Al-4 V 合金,增强其能量吸收和机械性能

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Rusheng Zhao , Shiyue Guo , Jian Wang , Bin Li , Fan Zhang , Donggen Yang , Xuezheng Yue , Xiangyu Guo , Huiling Tang
{"title":"通过激光粉末床熔融技术制造具有梯度无序晶胞的多孔 Ti-6Al-4 V 合金,增强其能量吸收和机械性能","authors":"Rusheng Zhao ,&nbsp;Shiyue Guo ,&nbsp;Jian Wang ,&nbsp;Bin Li ,&nbsp;Fan Zhang ,&nbsp;Donggen Yang ,&nbsp;Xuezheng Yue ,&nbsp;Xiangyu Guo ,&nbsp;Huiling Tang","doi":"10.1016/j.tws.2024.112632","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) has revolutionized the production of porous metals, greatly improving control over their structural properties and offering unprecedented advantages in lightweight applications and energy absorption. Balancing energy absorption and compressive strength in ordered and disordered porous structures is challenging due to shear deformation and deformation mechanisms. This study investigates the mechanical and energy absorption properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated using laser powder bed fusion (LPBF). The compressive response of samples with different regularities (<em>R</em>) and varying layers of disordered cells was analyzed through quasi-static compression experiments and finite element simulations. The results indicate that introducing a disordered cell gradient significantly enhances energy absorption by preventing the formation of shear bands observed in porous structures with ordered cell structures. When the regularity (<em>R</em>) is 0.8, 0.4, and 0.2 with one or two layers of disordered cells, mechanical properties are optimized and characterized by a balance between compressive strength and energy absorption. It is significant that, while preserving or enhancing compressive strength, the energy absorption of the material can be augmented substantially. Specifically, porous Ti-6Al-4 V (<em>R</em> = 0.8, <em>L4</em>) achieves an energy absorption increase of up to 154.9kJ/m³, which represents a dramatic enhancement of approximately 245.0 % over the regular porous structure (<em>R</em> = 0 or <em>L0</em>), which absorbs only 44.9 kJ/m³. Compared to ordered and disordered porous structures, the disordered cell gradient demonstrates significant potential in tuning the mechanical properties of porous metals, thereby advancing their applications in aerospace, biomedical, and protective fields.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112632"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced energy absorption and mechanical properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated by laser powder bed fusion\",\"authors\":\"Rusheng Zhao ,&nbsp;Shiyue Guo ,&nbsp;Jian Wang ,&nbsp;Bin Li ,&nbsp;Fan Zhang ,&nbsp;Donggen Yang ,&nbsp;Xuezheng Yue ,&nbsp;Xiangyu Guo ,&nbsp;Huiling Tang\",\"doi\":\"10.1016/j.tws.2024.112632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing (AM) has revolutionized the production of porous metals, greatly improving control over their structural properties and offering unprecedented advantages in lightweight applications and energy absorption. Balancing energy absorption and compressive strength in ordered and disordered porous structures is challenging due to shear deformation and deformation mechanisms. This study investigates the mechanical and energy absorption properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated using laser powder bed fusion (LPBF). The compressive response of samples with different regularities (<em>R</em>) and varying layers of disordered cells was analyzed through quasi-static compression experiments and finite element simulations. The results indicate that introducing a disordered cell gradient significantly enhances energy absorption by preventing the formation of shear bands observed in porous structures with ordered cell structures. When the regularity (<em>R</em>) is 0.8, 0.4, and 0.2 with one or two layers of disordered cells, mechanical properties are optimized and characterized by a balance between compressive strength and energy absorption. It is significant that, while preserving or enhancing compressive strength, the energy absorption of the material can be augmented substantially. Specifically, porous Ti-6Al-4 V (<em>R</em> = 0.8, <em>L4</em>) achieves an energy absorption increase of up to 154.9kJ/m³, which represents a dramatic enhancement of approximately 245.0 % over the regular porous structure (<em>R</em> = 0 or <em>L0</em>), which absorbs only 44.9 kJ/m³. Compared to ordered and disordered porous structures, the disordered cell gradient demonstrates significant potential in tuning the mechanical properties of porous metals, thereby advancing their applications in aerospace, biomedical, and protective fields.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112632\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124010723\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010723","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)彻底改变了多孔金属的生产,极大地改善了对其结构特性的控制,并在轻质应用和能量吸收方面提供了前所未有的优势。由于剪切变形和变形机制的原因,在有序和无序多孔结构中平衡能量吸收和抗压强度具有挑战性。本研究探讨了使用激光粉末床熔融(LPBF)制造的具有梯度无序单元的多孔 Ti-6Al-4 V 合金的机械和能量吸收特性。通过准静态压缩实验和有限元模拟,分析了具有不同规则性(R)和不同无序晶胞层的样品的压缩响应。结果表明,引入无序细胞梯度可以防止在具有有序细胞结构的多孔结构中观察到的剪切带的形成,从而显著增强能量吸收。当规则度(R)分别为 0.8、0.4 和 0.2 且有一层或两层无序细胞时,机械性能得到了优化,其特点是抗压强度和能量吸收之间达到了平衡。重要的是,在保持或增强抗压强度的同时,材料的能量吸收能力也能得到大幅提高。具体来说,多孔 Ti-6Al-4 V(R = 0.8,L4)的能量吸收率最高可达 154.9kJ/m³,与普通多孔结构(R = 0 或 L0)相比,能量吸收率大幅提高了约 245.0%,普通多孔结构的能量吸收率仅为 44.9 kJ/m³。与有序和无序多孔结构相比,无序细胞梯度在调整多孔金属的机械性能方面具有巨大潜力,从而推动了它们在航空航天、生物医学和防护领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced energy absorption and mechanical properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated by laser powder bed fusion
Additive manufacturing (AM) has revolutionized the production of porous metals, greatly improving control over their structural properties and offering unprecedented advantages in lightweight applications and energy absorption. Balancing energy absorption and compressive strength in ordered and disordered porous structures is challenging due to shear deformation and deformation mechanisms. This study investigates the mechanical and energy absorption properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated using laser powder bed fusion (LPBF). The compressive response of samples with different regularities (R) and varying layers of disordered cells was analyzed through quasi-static compression experiments and finite element simulations. The results indicate that introducing a disordered cell gradient significantly enhances energy absorption by preventing the formation of shear bands observed in porous structures with ordered cell structures. When the regularity (R) is 0.8, 0.4, and 0.2 with one or two layers of disordered cells, mechanical properties are optimized and characterized by a balance between compressive strength and energy absorption. It is significant that, while preserving or enhancing compressive strength, the energy absorption of the material can be augmented substantially. Specifically, porous Ti-6Al-4 V (R = 0.8, L4) achieves an energy absorption increase of up to 154.9kJ/m³, which represents a dramatic enhancement of approximately 245.0 % over the regular porous structure (R = 0 or L0), which absorbs only 44.9 kJ/m³. Compared to ordered and disordered porous structures, the disordered cell gradient demonstrates significant potential in tuning the mechanical properties of porous metals, thereby advancing their applications in aerospace, biomedical, and protective fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信