Long Shen , Zuming He , Kai Lin , Jiangbin Su , Jun Yi , Longlong Chen , Yongmei Xia
{"title":"用于锂离子电池负极材料的掺杂 Ce 的 Li4Ti5O12 的核壳结构和高倍率性能","authors":"Long Shen , Zuming He , Kai Lin , Jiangbin Su , Jun Yi , Longlong Chen , Yongmei Xia","doi":"10.1016/j.jelechem.2024.118725","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium titanate (LTO) can be a very promising anode material for lithium-ion batteries (LSBs) due to its inherent ability to inhibit the growth of lithium dendrites as well as its unique “zero-strain” properties. Unfortunately, the low electronic conductivity of LTO leads to serious shortcomings in higher electrochemical demands. In this work, the Ce<sup>3+</sup>-doped C@Li<sub>4</sub>Ti<sub>5</sub>-<em><sub>x</sub></em>Ce<em><sub>x</sub></em>O<sub>12</sub> (<em>x</em> = 0, 0.1, 0.15 and 0.2) anode materials synthesized by the hydrothermal method using carbon spheres as templates showed more significant improvement in both structural and electrochemical properties. The results demonstrate that electronic conductivity, lithium-ion diffusion rate, discharge specific capacity, discharge rate capability, and significant improvement stability of C@Li<sub>4</sub>Ti<sub>5</sub>-<em><sub>x</sub></em>Ce<em><sub>x</sub></em>O<sub>12</sub> (<em>x</em> = 0.1, 0.15 and 0.2) electrodes<em>.</em> Among them, C@Li<sub>4</sub>Ti<sub>4.85</sub>Ce<sub>0.15</sub>O<sub>12</sub> electrode exhibits the highest initial discharge specific capacity (250.86 mAh/g) at 0.1C, which is 1.28-fold that of C@ Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (195.94 mAh/g), and initial discharge capacity from 205.96 mAh/g to 170.39 mAh/g after 500 cycles, corresponding to 82.7 % of the initial stable discharge capacity. The outstanding performance of C@Li<sub>4</sub>Ti<sub>4.85</sub>Ce<sub>0.15</sub>O<sub>12</sub> can be attributed to the lower interfacial impedance, higher electronic conductivity, high oxygen vacancy concentration, and moderate amount of Ce<sup>3+</sup> doping can enhance the electrochemical activity. In addition, carbon sphere surface defects shown to be effective in improving lithium-ion storage. This work demonstrates that Ce<sup>3+</sup> doping is an effective method to improve the electrochemical performance of LTOs and provides a more effective guide for designing and optimizing anode electrode materials for lithium-ion batteries.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118725"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-shell structure and high rate performance of Ce-doped Li4Ti5O12 for lithium-ion battery anode materials\",\"authors\":\"Long Shen , Zuming He , Kai Lin , Jiangbin Su , Jun Yi , Longlong Chen , Yongmei Xia\",\"doi\":\"10.1016/j.jelechem.2024.118725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium titanate (LTO) can be a very promising anode material for lithium-ion batteries (LSBs) due to its inherent ability to inhibit the growth of lithium dendrites as well as its unique “zero-strain” properties. Unfortunately, the low electronic conductivity of LTO leads to serious shortcomings in higher electrochemical demands. In this work, the Ce<sup>3+</sup>-doped C@Li<sub>4</sub>Ti<sub>5</sub>-<em><sub>x</sub></em>Ce<em><sub>x</sub></em>O<sub>12</sub> (<em>x</em> = 0, 0.1, 0.15 and 0.2) anode materials synthesized by the hydrothermal method using carbon spheres as templates showed more significant improvement in both structural and electrochemical properties. The results demonstrate that electronic conductivity, lithium-ion diffusion rate, discharge specific capacity, discharge rate capability, and significant improvement stability of C@Li<sub>4</sub>Ti<sub>5</sub>-<em><sub>x</sub></em>Ce<em><sub>x</sub></em>O<sub>12</sub> (<em>x</em> = 0.1, 0.15 and 0.2) electrodes<em>.</em> Among them, C@Li<sub>4</sub>Ti<sub>4.85</sub>Ce<sub>0.15</sub>O<sub>12</sub> electrode exhibits the highest initial discharge specific capacity (250.86 mAh/g) at 0.1C, which is 1.28-fold that of C@ Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (195.94 mAh/g), and initial discharge capacity from 205.96 mAh/g to 170.39 mAh/g after 500 cycles, corresponding to 82.7 % of the initial stable discharge capacity. The outstanding performance of C@Li<sub>4</sub>Ti<sub>4.85</sub>Ce<sub>0.15</sub>O<sub>12</sub> can be attributed to the lower interfacial impedance, higher electronic conductivity, high oxygen vacancy concentration, and moderate amount of Ce<sup>3+</sup> doping can enhance the electrochemical activity. In addition, carbon sphere surface defects shown to be effective in improving lithium-ion storage. This work demonstrates that Ce<sup>3+</sup> doping is an effective method to improve the electrochemical performance of LTOs and provides a more effective guide for designing and optimizing anode electrode materials for lithium-ion batteries.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"974 \",\"pages\":\"Article 118725\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007033\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007033","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Core-shell structure and high rate performance of Ce-doped Li4Ti5O12 for lithium-ion battery anode materials
Lithium titanate (LTO) can be a very promising anode material for lithium-ion batteries (LSBs) due to its inherent ability to inhibit the growth of lithium dendrites as well as its unique “zero-strain” properties. Unfortunately, the low electronic conductivity of LTO leads to serious shortcomings in higher electrochemical demands. In this work, the Ce3+-doped C@Li4Ti5-xCexO12 (x = 0, 0.1, 0.15 and 0.2) anode materials synthesized by the hydrothermal method using carbon spheres as templates showed more significant improvement in both structural and electrochemical properties. The results demonstrate that electronic conductivity, lithium-ion diffusion rate, discharge specific capacity, discharge rate capability, and significant improvement stability of C@Li4Ti5-xCexO12 (x = 0.1, 0.15 and 0.2) electrodes. Among them, C@Li4Ti4.85Ce0.15O12 electrode exhibits the highest initial discharge specific capacity (250.86 mAh/g) at 0.1C, which is 1.28-fold that of C@ Li4Ti5O12 (195.94 mAh/g), and initial discharge capacity from 205.96 mAh/g to 170.39 mAh/g after 500 cycles, corresponding to 82.7 % of the initial stable discharge capacity. The outstanding performance of C@Li4Ti4.85Ce0.15O12 can be attributed to the lower interfacial impedance, higher electronic conductivity, high oxygen vacancy concentration, and moderate amount of Ce3+ doping can enhance the electrochemical activity. In addition, carbon sphere surface defects shown to be effective in improving lithium-ion storage. This work demonstrates that Ce3+ doping is an effective method to improve the electrochemical performance of LTOs and provides a more effective guide for designing and optimizing anode electrode materials for lithium-ion batteries.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.