用于诊断小于 1 厘米甲状腺结节的深度学习模型:一项多中心回顾性研究

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Na Feng , Shanshan Zhao , Kai Wang , Peizhe Chen , Yunpeng Wang , Yuan Gao , Zhengping Wang , Yidan Lu , Chen Chen , Jincao Yao , Zhikai Lei , Dong Xu
{"title":"用于诊断小于 1 厘米甲状腺结节的深度学习模型:一项多中心回顾性研究","authors":"Na Feng ,&nbsp;Shanshan Zhao ,&nbsp;Kai Wang ,&nbsp;Peizhe Chen ,&nbsp;Yunpeng Wang ,&nbsp;Yuan Gao ,&nbsp;Zhengping Wang ,&nbsp;Yidan Lu ,&nbsp;Chen Chen ,&nbsp;Jincao Yao ,&nbsp;Zhikai Lei ,&nbsp;Dong Xu","doi":"10.1016/j.ejro.2024.100609","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.</div></div><div><h3>Methods</h3><div>A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).</div></div><div><h3>Results</h3><div>TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.</div></div><div><h3>Conclusion</h3><div>The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"13 ","pages":"Article 100609"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study\",\"authors\":\"Na Feng ,&nbsp;Shanshan Zhao ,&nbsp;Kai Wang ,&nbsp;Peizhe Chen ,&nbsp;Yunpeng Wang ,&nbsp;Yuan Gao ,&nbsp;Zhengping Wang ,&nbsp;Yidan Lu ,&nbsp;Chen Chen ,&nbsp;Jincao Yao ,&nbsp;Zhikai Lei ,&nbsp;Dong Xu\",\"doi\":\"10.1016/j.ejro.2024.100609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.</div></div><div><h3>Methods</h3><div>A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).</div></div><div><h3>Results</h3><div>TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.</div></div><div><h3>Conclusion</h3><div>The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.</div></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":\"13 \",\"pages\":\"Article 100609\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

方法提出了一种名为甲状腺结节变压器网络(TNT-Net)的双通道深度学习模型。该模型有两个输入通道,分别用于甲状腺结节的横向和纵向超声图像。研究人员回顾性收集了五家医院 8455 名患者的 9649 个甲状腺结节。数据分为训练集(8453 个结节,7369 名患者)、内部测试集(565 个结节,512 名患者)和外部测试集(631 个结节,574 名患者)。结果TNT-Net在内部测试集上的曲线下面积(AUC)为0.953(95 % 置信区间(CI):0.934,0.969),在外部测试集上的曲线下面积(AUC)为0.941(95 % 置信区间(CI):0.921,0.957),明显优于传统的深度卷积神经网络模型和单通道swin transformer模型,后者的AUC在0.800(95 % 置信区间(CI):0.759,0.837)到0.856(95 % 置信区间(CI):0.819,0.881)之间。此外,特征热图可视化显示 TNT-Net 能提取出更丰富、更有活力的恶性结节模式。该模型有望减少此类结节的过度诊断和过度治疗,为甲状腺结节的精确管理提供重要支持,同时也是对细针穿刺活检的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study

Objective

To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.

Methods

A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).

Results

TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.

Conclusion

The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信