叶面喷施硫磺和钾对小麦籽粒蛋白质质量的影响

IF 5.6 1区 农林科学 Q1 AGRONOMY
{"title":"叶面喷施硫磺和钾对小麦籽粒蛋白质质量的影响","authors":"","doi":"10.1016/j.fcr.2024.109639","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>The effects of sulfur and potassium fertilizers on wheat yield and quality have been well studied, but most of them are used as basal fertilizers. However, the root system is senescent at the later stages of wheat growth and cannot absorb sufficient sulfur and potassium fertilizers plant needed. It is still unclear whether sulfur and potassium foliar applications at the later stages can affect wheat yield and quality.</div></div><div><h3>Objective</h3><div>This experiment was conducted to investigate the changes of sulfur and potassium accumulation and transport, protein synthesis and flour processing quality after foliar application of sulfur and potassium fertilizers, transport and the relating physiological mechanisms.</div></div><div><h3>Methods</h3><div>In 2020–2021 and 2021–2022, a three-factor split plot experiment was carried out in the middle and lower reaches of Yangtze River, with wheat variety, concentration of sulfur fertilizer and potassium fertilizer served as main factor, subfactor and sub-subfactor respectively.</div></div><div><h3>Results</h3><div>In the study from 2020 to 2022, the albumin protein content of both varieties decreased in the nutrient spraying treatment, particularly in the high potassium level. However, there was no significant effect on the globulin content. Moreover, the gliadin protein content decreased in the sulfur spraying treatment alone, but significantly increased the wheat gluten content, and thereby the total protein content. We also found significant genotypic differences in the composition and content of high molecular weight wheat glutenin subunits (HMW-GS) between the two varieties. The foliar spraying of sulfur and potassium fertilizers significantly increased the content of subunits 1 and 8 in Yangmai (YM15) and subunits 7 and 12 in Yangmai (YM16), and the effect of mixed spraying was better than single-nutrient spraying, especially the amount of 0.2 % sulfur and 0.3 % potassium fertilizer treatment.</div></div><div><h3>Conclusions</h3><div>The superimposed effect of sulfur and potassium effectively increased the total protein content by promoting the accumulation of sulfur in transit to the seeds, increasing the substrate supply level, and enhancing enzyme activity. Although sulfur and potassium combination can improve the grain protein quality and flour processing quality, too high spraying concentrations can decrease the flour processing quality.</div></div><div><h3>Implications</h3><div>Spraying the appropriate amount of 0.2 % sulfur and 0.3 % potassium fertilizer can serve as an optimization measure for high-quality and efficient production of different types of wheat varieties.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of sulfur and potassium foliar applications on wheat grain protein quality\",\"authors\":\"\",\"doi\":\"10.1016/j.fcr.2024.109639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><div>The effects of sulfur and potassium fertilizers on wheat yield and quality have been well studied, but most of them are used as basal fertilizers. However, the root system is senescent at the later stages of wheat growth and cannot absorb sufficient sulfur and potassium fertilizers plant needed. It is still unclear whether sulfur and potassium foliar applications at the later stages can affect wheat yield and quality.</div></div><div><h3>Objective</h3><div>This experiment was conducted to investigate the changes of sulfur and potassium accumulation and transport, protein synthesis and flour processing quality after foliar application of sulfur and potassium fertilizers, transport and the relating physiological mechanisms.</div></div><div><h3>Methods</h3><div>In 2020–2021 and 2021–2022, a three-factor split plot experiment was carried out in the middle and lower reaches of Yangtze River, with wheat variety, concentration of sulfur fertilizer and potassium fertilizer served as main factor, subfactor and sub-subfactor respectively.</div></div><div><h3>Results</h3><div>In the study from 2020 to 2022, the albumin protein content of both varieties decreased in the nutrient spraying treatment, particularly in the high potassium level. However, there was no significant effect on the globulin content. Moreover, the gliadin protein content decreased in the sulfur spraying treatment alone, but significantly increased the wheat gluten content, and thereby the total protein content. We also found significant genotypic differences in the composition and content of high molecular weight wheat glutenin subunits (HMW-GS) between the two varieties. The foliar spraying of sulfur and potassium fertilizers significantly increased the content of subunits 1 and 8 in Yangmai (YM15) and subunits 7 and 12 in Yangmai (YM16), and the effect of mixed spraying was better than single-nutrient spraying, especially the amount of 0.2 % sulfur and 0.3 % potassium fertilizer treatment.</div></div><div><h3>Conclusions</h3><div>The superimposed effect of sulfur and potassium effectively increased the total protein content by promoting the accumulation of sulfur in transit to the seeds, increasing the substrate supply level, and enhancing enzyme activity. Although sulfur and potassium combination can improve the grain protein quality and flour processing quality, too high spraying concentrations can decrease the flour processing quality.</div></div><div><h3>Implications</h3><div>Spraying the appropriate amount of 0.2 % sulfur and 0.3 % potassium fertilizer can serve as an optimization measure for high-quality and efficient production of different types of wheat varieties.</div></div>\",\"PeriodicalId\":12143,\"journal\":{\"name\":\"Field Crops Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Crops Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378429024003927\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003927","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景硫肥和钾肥对小麦产量和品质的影响已得到充分研究,但它们大多被用作基肥。然而,小麦生长后期根系衰老,无法吸收植物所需的足够硫肥和钾肥。本实验旨在研究叶面喷施硫肥和钾肥后,硫肥和钾肥的积累与运输、蛋白质合成和面粉加工品质的变化、运输及相关生理机制。方法于 2020-2021 年和 2021-2022 年在长江中下游地区进行三因素小区试验,分别以小麦品种、硫肥浓度和钾肥浓度为主因素、次因素和子因素。但对球蛋白含量没有明显影响。此外,在单独喷洒硫磺的处理中,麦胶蛋白含量下降,但小麦面筋含量却显著增加,从而增加了总蛋白含量。我们还发现,两个品种的高分子量小麦谷蛋白亚基(HMW-GS)的组成和含量存在明显的基因型差异。叶面喷施硫肥和钾肥可显著提高扬麦(YM15)1号和8号亚基以及扬麦(YM16)7号和12号亚基的含量,混合喷施的效果优于单一营养元素喷施,尤其是0.2 %硫肥和0.结论 硫钾的叠加效应通过促进硫在种子转运过程中的积累、提高基质供应水平和增强酶活性,有效提高了总蛋白含量。意义喷施适量的 0.2 % 硫肥和 0.3 % 钾肥可作为不同类型小麦品种优质高效生产的优化措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of sulfur and potassium foliar applications on wheat grain protein quality

Context

The effects of sulfur and potassium fertilizers on wheat yield and quality have been well studied, but most of them are used as basal fertilizers. However, the root system is senescent at the later stages of wheat growth and cannot absorb sufficient sulfur and potassium fertilizers plant needed. It is still unclear whether sulfur and potassium foliar applications at the later stages can affect wheat yield and quality.

Objective

This experiment was conducted to investigate the changes of sulfur and potassium accumulation and transport, protein synthesis and flour processing quality after foliar application of sulfur and potassium fertilizers, transport and the relating physiological mechanisms.

Methods

In 2020–2021 and 2021–2022, a three-factor split plot experiment was carried out in the middle and lower reaches of Yangtze River, with wheat variety, concentration of sulfur fertilizer and potassium fertilizer served as main factor, subfactor and sub-subfactor respectively.

Results

In the study from 2020 to 2022, the albumin protein content of both varieties decreased in the nutrient spraying treatment, particularly in the high potassium level. However, there was no significant effect on the globulin content. Moreover, the gliadin protein content decreased in the sulfur spraying treatment alone, but significantly increased the wheat gluten content, and thereby the total protein content. We also found significant genotypic differences in the composition and content of high molecular weight wheat glutenin subunits (HMW-GS) between the two varieties. The foliar spraying of sulfur and potassium fertilizers significantly increased the content of subunits 1 and 8 in Yangmai (YM15) and subunits 7 and 12 in Yangmai (YM16), and the effect of mixed spraying was better than single-nutrient spraying, especially the amount of 0.2 % sulfur and 0.3 % potassium fertilizer treatment.

Conclusions

The superimposed effect of sulfur and potassium effectively increased the total protein content by promoting the accumulation of sulfur in transit to the seeds, increasing the substrate supply level, and enhancing enzyme activity. Although sulfur and potassium combination can improve the grain protein quality and flour processing quality, too high spraying concentrations can decrease the flour processing quality.

Implications

Spraying the appropriate amount of 0.2 % sulfur and 0.3 % potassium fertilizer can serve as an optimization measure for high-quality and efficient production of different types of wheat varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Field Crops Research
Field Crops Research 农林科学-农艺学
CiteScore
9.60
自引率
12.10%
发文量
307
审稿时长
46 days
期刊介绍: Field Crops Research is an international journal publishing scientific articles on: √ experimental and modelling research at field, farm and landscape levels on temperate and tropical crops and cropping systems, with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信