每个无 3 连接的 {K1,3,Γ3} 图都是汉密尔顿连接的

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"每个无 3 连接的 {K1,3,Γ3} 图都是汉密尔顿连接的","authors":"","doi":"10.1016/j.disc.2024.114305","DOIUrl":null,"url":null,"abstract":"<div><div>We show that every 3-connected <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graph is Hamilton-connected, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. This resolves one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new closure technique, developed in a previous paper, and on a structural analysis of small subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of the analysis are computer-assisted.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that every 3-connected <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graph is Hamilton-connected, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. This resolves one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new closure technique, developed in a previous paper, and on a structural analysis of small subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of the analysis are computer-assisted.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004369\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004369","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个无 3 连接的 {K1,3,Γ3} 图都是汉密尔顿连接的,其中Γ3 是用长度为 3 的路径连接两个顶点相交的三角形所得到的图。这解决了暗示汉密尔顿连接性的成对连接的禁止子图的特征描述中最后两个开放案例之一。证明基于前一篇论文中开发的一种新的闭合技术,以及对多图行图中的小子图、循环和路径的结构分析。分析的大部分技术步骤都由计算机辅助完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected
We show that every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected, where Γ3 is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. This resolves one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new closure technique, developed in a previous paper, and on a structural analysis of small subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of the analysis are computer-assisted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信