二维质量临界半波方程的爆炸动力学

IF 2.4 2区 数学 Q1 MATHEMATICS
Vladimir Georgiev , Yuan Li
{"title":"二维质量临界半波方程的爆炸动力学","authors":"Vladimir Georgiev ,&nbsp;Yuan Li","doi":"10.1016/j.jde.2024.10.031","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the two-dimensional half-wave equation <span><math><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><mo>|</mo><mi>u</mi></math></span>. For the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, we obtain the existence of non-radial ground state mass blow-up solutions with the blow-up rate <span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mfrac></math></span> as <span><math><mi>t</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. This work extends the recent study by Georgiev and Li (2022) <span><span>[9]</span></span>, which focused on constructing radial ground state mass blow-up solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1496-1527"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blowup dynamics for the mass critical half-wave equation in 2D\",\"authors\":\"Vladimir Georgiev ,&nbsp;Yuan Li\",\"doi\":\"10.1016/j.jde.2024.10.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the two-dimensional half-wave equation <span><math><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><mo>|</mo><mi>u</mi></math></span>. For the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, we obtain the existence of non-radial ground state mass blow-up solutions with the blow-up rate <span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mfrac></math></span> as <span><math><mi>t</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. This work extends the recent study by Georgiev and Li (2022) <span><span>[9]</span></span>, which focused on constructing radial ground state mass blow-up solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1496-1527\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006880\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006880","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑二维半波方程 iut=Du-|u|u。对于初始数据 u0(x)∈Hs(R2), s∈(34,1),我们得到了非径向基态质量炸毁解的存在,其炸毁率‖D12u(t)‖L2∼1|t|为 t→0-。这项工作扩展了 Georgiev 和 Li(2022 年)[9]的最新研究,后者的重点是构建径向基态质量炸毁解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blowup dynamics for the mass critical half-wave equation in 2D
We consider the two-dimensional half-wave equation iut=Du|u|u. For the initial data u0(x)Hs(R2), s(34,1), we obtain the existence of non-radial ground state mass blow-up solutions with the blow-up rate D12u(t)L21|t| as t0. This work extends the recent study by Georgiev and Li (2022) [9], which focused on constructing radial ground state mass blow-up solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信