{"title":"二维质量临界半波方程的爆炸动力学","authors":"Vladimir Georgiev , Yuan Li","doi":"10.1016/j.jde.2024.10.031","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the two-dimensional half-wave equation <span><math><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><mo>|</mo><mi>u</mi></math></span>. For the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, we obtain the existence of non-radial ground state mass blow-up solutions with the blow-up rate <span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mfrac></math></span> as <span><math><mi>t</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. This work extends the recent study by Georgiev and Li (2022) <span><span>[9]</span></span>, which focused on constructing radial ground state mass blow-up solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1496-1527"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blowup dynamics for the mass critical half-wave equation in 2D\",\"authors\":\"Vladimir Georgiev , Yuan Li\",\"doi\":\"10.1016/j.jde.2024.10.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the two-dimensional half-wave equation <span><math><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>D</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><mo>|</mo><mi>u</mi></math></span>. For the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, we obtain the existence of non-radial ground state mass blow-up solutions with the blow-up rate <span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>D</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mfrac></math></span> as <span><math><mi>t</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. This work extends the recent study by Georgiev and Li (2022) <span><span>[9]</span></span>, which focused on constructing radial ground state mass blow-up solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1496-1527\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006880\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006880","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Blowup dynamics for the mass critical half-wave equation in 2D
We consider the two-dimensional half-wave equation . For the initial data , , we obtain the existence of non-radial ground state mass blow-up solutions with the blow-up rate as . This work extends the recent study by Georgiev and Li (2022) [9], which focused on constructing radial ground state mass blow-up solutions.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics