{"title":"三角形群的可溶性商","authors":"Marston D.E. Conder, Darius W. Young","doi":"10.1016/j.jalgebra.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>This paper helps explain the prevalence of soluble groups among the automorphism groups of regular maps (at least for ‘small’ genus), by showing that every non-perfect hyperbolic ordinary triangle group <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>〈</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mspace></mspace><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>=</mo><mn>1</mn><mspace></mspace><mo>〉</mo></math></span> has a smooth finite soluble quotient of derived length <em>c</em> for some <span><math><mi>c</mi><mo>≤</mo><mn>3</mn></math></span>, and infinitely many such quotients of derived length <em>d</em> for every <span><math><mi>d</mi><mo>></mo><mi>c</mi></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"664 ","pages":"Pages 888-903"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soluble quotients of triangle groups\",\"authors\":\"Marston D.E. Conder, Darius W. Young\",\"doi\":\"10.1016/j.jalgebra.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper helps explain the prevalence of soluble groups among the automorphism groups of regular maps (at least for ‘small’ genus), by showing that every non-perfect hyperbolic ordinary triangle group <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>〈</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mspace></mspace><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>=</mo><mn>1</mn><mspace></mspace><mo>〉</mo></math></span> has a smooth finite soluble quotient of derived length <em>c</em> for some <span><math><mi>c</mi><mo>≤</mo><mn>3</mn></math></span>, and infinitely many such quotients of derived length <em>d</em> for every <span><math><mi>d</mi><mo>></mo><mi>c</mi></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"664 \",\"pages\":\"Pages 888-903\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005568\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005568","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper helps explain the prevalence of soluble groups among the automorphism groups of regular maps (at least for ‘small’ genus), by showing that every non-perfect hyperbolic ordinary triangle group has a smooth finite soluble quotient of derived length c for some , and infinitely many such quotients of derived length d for every .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.