三角形群的可溶性商

Pub Date : 2024-10-21 DOI:10.1016/j.jalgebra.2024.10.012
Marston D.E. Conder, Darius W. Young
{"title":"三角形群的可溶性商","authors":"Marston D.E. Conder,&nbsp;Darius W. Young","doi":"10.1016/j.jalgebra.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>This paper helps explain the prevalence of soluble groups among the automorphism groups of regular maps (at least for ‘small’ genus), by showing that every non-perfect hyperbolic ordinary triangle group <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>〈</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mspace></mspace><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>=</mo><mn>1</mn><mspace></mspace><mo>〉</mo></math></span> has a smooth finite soluble quotient of derived length <em>c</em> for some <span><math><mi>c</mi><mo>≤</mo><mn>3</mn></math></span>, and infinitely many such quotients of derived length <em>d</em> for every <span><math><mi>d</mi><mo>&gt;</mo><mi>c</mi></math></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soluble quotients of triangle groups\",\"authors\":\"Marston D.E. Conder,&nbsp;Darius W. Young\",\"doi\":\"10.1016/j.jalgebra.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper helps explain the prevalence of soluble groups among the automorphism groups of regular maps (at least for ‘small’ genus), by showing that every non-perfect hyperbolic ordinary triangle group <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>〈</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>y</mi><mspace></mspace><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>=</mo><mn>1</mn><mspace></mspace><mo>〉</mo></math></span> has a smooth finite soluble quotient of derived length <em>c</em> for some <span><math><mi>c</mi><mo>≤</mo><mn>3</mn></math></span>, and infinitely many such quotients of derived length <em>d</em> for every <span><math><mi>d</mi><mo>&gt;</mo><mi>c</mi></math></span>.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过证明每个非完全双曲常三角形群 Δ+(p,q,r)=〈x,y|xp=yq=(xy)r=1〉都有一个派生长度为 c(某个 c≤3 )的光滑有限可溶商,以及派生长度为 d(每个 d>c 都有无穷多个这样的商),有助于解释可溶群在正则映射的自变群中(至少对 "小 "属而言)的普遍存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Soluble quotients of triangle groups
This paper helps explain the prevalence of soluble groups among the automorphism groups of regular maps (at least for ‘small’ genus), by showing that every non-perfect hyperbolic ordinary triangle group Δ+(p,q,r)=x,y|xp=yq=(xy)r=1 has a smooth finite soluble quotient of derived length c for some c3, and infinitely many such quotients of derived length d for every d>c.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信