Matteo Cristofaro , Pier Luigi Giardino , Luca Barboni
{"title":"增长黑客:数据驱动决策的科学方法","authors":"Matteo Cristofaro , Pier Luigi Giardino , Luca Barboni","doi":"10.1016/j.jbusres.2024.115030","DOIUrl":null,"url":null,"abstract":"<div><div>Today’s businesses necessitate data-driven decisions to continuously adapt (and even shape) their environment to stay competitive. Growth hacking, with its emphasis on experimentation and data analysis, offers a promising approach to meet this need. Even though interest in growth hacking is increasing, the literature on the topic is still developing, and notclear guidance in how to implement it has yet been provided. Combining the scientific method and Taylor’s scientific management principles with growth hacking insights from academic research and practice, we present growth hacking as a scientific approach for data-driven decision making in organisations. Through its iterative cycle of analysis, ideation, prioritisation, testing, and evaluation of prerequisites and facilitators, growth hacking empowers companies to make data-driven decisions, enabling them to navigate uncertainty, identify and seize opportunities, and transform their operations to adapt to or shape their environment. We also provide point out tools for the real-world business applications of growth hacking.</div></div>","PeriodicalId":15123,"journal":{"name":"Journal of Business Research","volume":"186 ","pages":"Article 115030"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth hacking: A scientific approach for data-driven decision making\",\"authors\":\"Matteo Cristofaro , Pier Luigi Giardino , Luca Barboni\",\"doi\":\"10.1016/j.jbusres.2024.115030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Today’s businesses necessitate data-driven decisions to continuously adapt (and even shape) their environment to stay competitive. Growth hacking, with its emphasis on experimentation and data analysis, offers a promising approach to meet this need. Even though interest in growth hacking is increasing, the literature on the topic is still developing, and notclear guidance in how to implement it has yet been provided. Combining the scientific method and Taylor’s scientific management principles with growth hacking insights from academic research and practice, we present growth hacking as a scientific approach for data-driven decision making in organisations. Through its iterative cycle of analysis, ideation, prioritisation, testing, and evaluation of prerequisites and facilitators, growth hacking empowers companies to make data-driven decisions, enabling them to navigate uncertainty, identify and seize opportunities, and transform their operations to adapt to or shape their environment. We also provide point out tools for the real-world business applications of growth hacking.</div></div>\",\"PeriodicalId\":15123,\"journal\":{\"name\":\"Journal of Business Research\",\"volume\":\"186 \",\"pages\":\"Article 115030\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0148296324005344\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0148296324005344","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Growth hacking: A scientific approach for data-driven decision making
Today’s businesses necessitate data-driven decisions to continuously adapt (and even shape) their environment to stay competitive. Growth hacking, with its emphasis on experimentation and data analysis, offers a promising approach to meet this need. Even though interest in growth hacking is increasing, the literature on the topic is still developing, and notclear guidance in how to implement it has yet been provided. Combining the scientific method and Taylor’s scientific management principles with growth hacking insights from academic research and practice, we present growth hacking as a scientific approach for data-driven decision making in organisations. Through its iterative cycle of analysis, ideation, prioritisation, testing, and evaluation of prerequisites and facilitators, growth hacking empowers companies to make data-driven decisions, enabling them to navigate uncertainty, identify and seize opportunities, and transform their operations to adapt to or shape their environment. We also provide point out tools for the real-world business applications of growth hacking.
期刊介绍:
The Journal of Business Research aims to publish research that is rigorous, relevant, and potentially impactful. It examines a wide variety of business decision contexts, processes, and activities, developing insights that are meaningful for theory, practice, and/or society at large. The research is intended to generate meaningful debates in academia and practice, that are thought provoking and have the potential to make a difference to conceptual thinking and/or practice. The Journal is published for a broad range of stakeholders, including scholars, researchers, executives, and policy makers. It aids the application of its research to practical situations and theoretical findings to the reality of the business world as well as to society. The Journal is abstracted and indexed in several databases, including Social Sciences Citation Index, ANBAR, Current Contents, Management Contents, Management Literature in Brief, PsycINFO, Information Service, RePEc, Academic Journal Guide, ABI/Inform, INSPEC, etc.