用于分析应用的超极化台式 NMR 光谱仪

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ana I. Silva Terra, Daniel A. Taylor, Meghan E. Halse
{"title":"用于分析应用的超极化台式 NMR 光谱仪","authors":"Ana I. Silva Terra,&nbsp;Daniel A. Taylor,&nbsp;Meghan E. Halse","doi":"10.1016/j.pnmrs.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Benchtop NMR spectrometers, with moderate magnetic field strengths (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>−</mo><mn>2</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>T</mi></mrow></math></span>) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>7</mn><mspace></mspace><mi>T</mi></mrow></math></span>). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), <em>para</em>hydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.</div></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"144 ","pages":"Pages 153-178"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperpolarised benchtop NMR spectroscopy for analytical applications\",\"authors\":\"Ana I. Silva Terra,&nbsp;Daniel A. Taylor,&nbsp;Meghan E. Halse\",\"doi\":\"10.1016/j.pnmrs.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Benchtop NMR spectrometers, with moderate magnetic field strengths (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>−</mo><mn>2</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>T</mi></mrow></math></span>) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>7</mn><mspace></mspace><mi>T</mi></mrow></math></span>). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), <em>para</em>hydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.</div></div>\",\"PeriodicalId\":20740,\"journal\":{\"name\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"volume\":\"144 \",\"pages\":\"Pages 153-178\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079656524000232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656524000232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

台式 NMR 光谱仪具有中等磁场强度(B0=1-2.4T)和亚ppm 级的化学位移分辨率,是标准实验室 NMR(B0≥7T)的经济实惠且便携的替代品。然而,在转用低磁场仪器时,灵敏度和化学位移分辨率会显著降低。使用超极化技术可将台式 NMR 信号提高几个数量级,从而克服灵敏度限制。在目前可用的各种超极化方法中,动态核极化 (DNP)、对氢诱导极化 (PHIP) 和光化学诱导动态核极化 (photo-CIDNP) 是迄今为止最有希望与台式 NMR 集成用于分析应用的方法。在本综述中,我们总结了每种技术的理论,并讨论了如何将这些技术与台式 NMR 检测相结合的实例。我们讨论了将超极化台式 NMR 用于分析应用(从反应监测到生物分子相互作用探测)的进展,以及对未来的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyperpolarised benchtop NMR spectroscopy for analytical applications

Hyperpolarised benchtop NMR spectroscopy for analytical applications
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=12.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B07T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信