{"title":"具有近乎最佳时频衰减的函数空间的赫米特展开式","authors":"Lenny Neyt , Joachim Toft , Jasson Vindas","doi":"10.1016/j.jfa.2024.110706","DOIUrl":null,"url":null,"abstract":"<div><div>We establish Hermite expansion characterizations for several subspaces of the Fréchet space of functions on the real line satisfying<span><span><span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>≲</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>λ</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mo>|</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>|</mo><mo>≲</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>λ</mi><mo>)</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>λ</mi><mo>></mo><mn>0</mn><mo>.</mo></math></span></span></span> In particular, we extend and improve Fourier characterizations of the so-called proper Pilipović spaces obtained in <span><span>[21]</span></span>. The main ingredients in our proofs are the Bargmann transform and some achieved optimal forms of the Phragmén-Lindelöf principle.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermite expansions for spaces of functions with nearly optimal time-frequency decay\",\"authors\":\"Lenny Neyt , Joachim Toft , Jasson Vindas\",\"doi\":\"10.1016/j.jfa.2024.110706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish Hermite expansion characterizations for several subspaces of the Fréchet space of functions on the real line satisfying<span><span><span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>≲</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>λ</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mo>|</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>|</mo><mo>≲</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>λ</mi><mo>)</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>λ</mi><mo>></mo><mn>0</mn><mo>.</mo></math></span></span></span> In particular, we extend and improve Fourier characterizations of the so-called proper Pilipović spaces obtained in <span><span>[21]</span></span>. The main ingredients in our proofs are the Bargmann transform and some achieved optimal forms of the Phragmén-Lindelöf principle.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400394X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400394X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hermite expansions for spaces of functions with nearly optimal time-frequency decay
We establish Hermite expansion characterizations for several subspaces of the Fréchet space of functions on the real line satisfying In particular, we extend and improve Fourier characterizations of the so-called proper Pilipović spaces obtained in [21]. The main ingredients in our proofs are the Bargmann transform and some achieved optimal forms of the Phragmén-Lindelöf principle.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis