{"title":"带 J 型叶片的达里厄斯垂直轴风力涡轮机中涡流相互作用和叶片高度效应的综合研究","authors":"Ramin Farzadi, Derrick Gharapetian, Majid Bazargan","doi":"10.1002/ese3.1892","DOIUrl":null,"url":null,"abstract":"<p>There is a growing demand to improve the performance of vertical axis wind turbines to facilitate their commercialization for application in urban areas. This study utilizes a 3D numerical analysis to examine the influence of different vortices generated on turbine efficiency with straight and J-type blades. The numerical simulation of this study employs the Reynolds-Averaged Navier–Stokes equations and sliding mesh techniques to more accurately model the rotational motion of blades about the turbine axis in relation to the wind. Comparing the output torque and the flow field at different span-wise sections, the J-type blades achieve better performance at mid-spans where the effect of stall vortices is dominant. Conversely, the lower performance of J-type blades is seen at tip spans due to stronger tip vortices. Investigations also reveal the criticality of the downwind region on the overall performance at high tip speed ratios. It is observed that by increasing the height, the tip vortices are limited to the tip sections, and stall vortices expand further along the blade. At TSR = 1, the improvement by J-type blades rises from 10% at a height of 0.8 m to 44% at 3 m. The growth in height at lower wind speeds becomes more beneficial. Compared to the straight blades, the self-starting generated torque by J-type blades for heights of 0.8, 1.2, and 1.6 m, are improved by 15.6%, 26.9%, and 34.7%, respectively. Overall, it is concluded that by increasing the blade height, the superiority of the J-type blade becomes more noticeable as the blade mainly contributes to suppressing the stall vortices effect where the tip vortices effect is not presented. </p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1892","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study of vortices interaction and blades height effect in a Darrieus vertical axis wind turbine with J-type blades\",\"authors\":\"Ramin Farzadi, Derrick Gharapetian, Majid Bazargan\",\"doi\":\"10.1002/ese3.1892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a growing demand to improve the performance of vertical axis wind turbines to facilitate their commercialization for application in urban areas. This study utilizes a 3D numerical analysis to examine the influence of different vortices generated on turbine efficiency with straight and J-type blades. The numerical simulation of this study employs the Reynolds-Averaged Navier–Stokes equations and sliding mesh techniques to more accurately model the rotational motion of blades about the turbine axis in relation to the wind. Comparing the output torque and the flow field at different span-wise sections, the J-type blades achieve better performance at mid-spans where the effect of stall vortices is dominant. Conversely, the lower performance of J-type blades is seen at tip spans due to stronger tip vortices. Investigations also reveal the criticality of the downwind region on the overall performance at high tip speed ratios. It is observed that by increasing the height, the tip vortices are limited to the tip sections, and stall vortices expand further along the blade. At TSR = 1, the improvement by J-type blades rises from 10% at a height of 0.8 m to 44% at 3 m. The growth in height at lower wind speeds becomes more beneficial. Compared to the straight blades, the self-starting generated torque by J-type blades for heights of 0.8, 1.2, and 1.6 m, are improved by 15.6%, 26.9%, and 34.7%, respectively. Overall, it is concluded that by increasing the blade height, the superiority of the J-type blade becomes more noticeable as the blade mainly contributes to suppressing the stall vortices effect where the tip vortices effect is not presented. </p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1892\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1892\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1892","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comprehensive study of vortices interaction and blades height effect in a Darrieus vertical axis wind turbine with J-type blades
There is a growing demand to improve the performance of vertical axis wind turbines to facilitate their commercialization for application in urban areas. This study utilizes a 3D numerical analysis to examine the influence of different vortices generated on turbine efficiency with straight and J-type blades. The numerical simulation of this study employs the Reynolds-Averaged Navier–Stokes equations and sliding mesh techniques to more accurately model the rotational motion of blades about the turbine axis in relation to the wind. Comparing the output torque and the flow field at different span-wise sections, the J-type blades achieve better performance at mid-spans where the effect of stall vortices is dominant. Conversely, the lower performance of J-type blades is seen at tip spans due to stronger tip vortices. Investigations also reveal the criticality of the downwind region on the overall performance at high tip speed ratios. It is observed that by increasing the height, the tip vortices are limited to the tip sections, and stall vortices expand further along the blade. At TSR = 1, the improvement by J-type blades rises from 10% at a height of 0.8 m to 44% at 3 m. The growth in height at lower wind speeds becomes more beneficial. Compared to the straight blades, the self-starting generated torque by J-type blades for heights of 0.8, 1.2, and 1.6 m, are improved by 15.6%, 26.9%, and 34.7%, respectively. Overall, it is concluded that by increasing the blade height, the superiority of the J-type blade becomes more noticeable as the blade mainly contributes to suppressing the stall vortices effect where the tip vortices effect is not presented.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.