LineageFilter:利用元蛋白质组学和机器学习改进复杂样本的蛋白质分型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hamid Hachemi, Jean Armengaud, Lucia Grenga* and Olivier Pible, 
{"title":"LineageFilter:利用元蛋白质组学和机器学习改进复杂样本的蛋白质分型","authors":"Hamid Hachemi,&nbsp;Jean Armengaud,&nbsp;Lucia Grenga* and Olivier Pible,&nbsp;","doi":"10.1021/acs.jproteome.4c0018410.1021/acs.jproteome.4c00184","DOIUrl":null,"url":null,"abstract":"<p >Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon’s presence based on these features, enabling improved proteotyping and sample-specific database construction.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning\",\"authors\":\"Hamid Hachemi,&nbsp;Jean Armengaud,&nbsp;Lucia Grenga* and Olivier Pible,&nbsp;\",\"doi\":\"10.1021/acs.jproteome.4c0018410.1021/acs.jproteome.4c00184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon’s presence based on these features, enabling improved proteotyping and sample-specific database construction.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00184\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

元蛋白质组学是一种强大的工具,可通过串联质谱分析微生物群的蛋白质含量来描述微生物群的功能。鉴于这些样本的复杂性,在没有事先信息的情况下仅根据肽序列准确评估其分类组成仍然是一项挑战。在此,我们介绍一款基于 python- 的新型人工智能软件 LineageFilter,该软件可利用元蛋白组学解释数据和机器学习对复杂样本进行精细蛋白分型。LineageFilter 给定了一个暂定的分类群列表、它们的丰度以及与其鉴定肽段相关的分数,它能为每个已鉴定的分类群计算出所有分类等级的综合特征集。然后,它的机器学习模型会根据这些特征评估每个分类群存在的可能性,从而改进蛋白质分型和特定样本数据库的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning

LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning

Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon’s presence based on these features, enabling improved proteotyping and sample-specific database construction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信