Linhui Dai, Hong Liu, Pinhao Song, Hao Tang, Runwei Ding, Shengquan Li
{"title":"用于水下物体探测的边缘引导表示学习","authors":"Linhui Dai, Hong Liu, Pinhao Song, Hao Tang, Runwei Ding, Shengquan Li","doi":"10.1049/cit2.12325","DOIUrl":null,"url":null,"abstract":"<p>Underwater object detection (UOD) is crucial for marine economic development, environmental protection, and the planet's sustainable development. The main challenges of this task arise from low-contrast, small objects, and mimicry of aquatic organisms. The key to addressing these challenges is to focus the model on obtaining more discriminative information. The authors observe that the edges of underwater objects are highly unique and can be distinguished from low-contrast or mimicry environments based on their edges. Motivated by this observation, an Edge-guided Representation Learning Network, termed ERL-Net is proposed, that aims to achieve discriminative representation learning and aggregation under the guidance of edge cues. Firstly, an edge-guided attention module is introduced to model the explicit boundary information, which generates more discriminative features. Secondly, a hierarchical feature aggregation module is proposed to aggregate the multi-scale discriminative features by regrouping them into three levels, effectively aggregating global and local information for locating and recognising underwater objects. Finally, a wide and asymmetric receptive field block is proposed to enable features to have a wider receptive field, allowing the model to focus on smaller object information. Comprehensive experiments on three challenging underwater datasets show that our method achieves superior performance on the UOD task.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 5","pages":"1078-1091"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12325","citationCount":"0","resultStr":"{\"title\":\"Edge-guided representation learning for underwater object detection\",\"authors\":\"Linhui Dai, Hong Liu, Pinhao Song, Hao Tang, Runwei Ding, Shengquan Li\",\"doi\":\"10.1049/cit2.12325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Underwater object detection (UOD) is crucial for marine economic development, environmental protection, and the planet's sustainable development. The main challenges of this task arise from low-contrast, small objects, and mimicry of aquatic organisms. The key to addressing these challenges is to focus the model on obtaining more discriminative information. The authors observe that the edges of underwater objects are highly unique and can be distinguished from low-contrast or mimicry environments based on their edges. Motivated by this observation, an Edge-guided Representation Learning Network, termed ERL-Net is proposed, that aims to achieve discriminative representation learning and aggregation under the guidance of edge cues. Firstly, an edge-guided attention module is introduced to model the explicit boundary information, which generates more discriminative features. Secondly, a hierarchical feature aggregation module is proposed to aggregate the multi-scale discriminative features by regrouping them into three levels, effectively aggregating global and local information for locating and recognising underwater objects. Finally, a wide and asymmetric receptive field block is proposed to enable features to have a wider receptive field, allowing the model to focus on smaller object information. Comprehensive experiments on three challenging underwater datasets show that our method achieves superior performance on the UOD task.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 5\",\"pages\":\"1078-1091\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12325\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12325\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12325","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Edge-guided representation learning for underwater object detection
Underwater object detection (UOD) is crucial for marine economic development, environmental protection, and the planet's sustainable development. The main challenges of this task arise from low-contrast, small objects, and mimicry of aquatic organisms. The key to addressing these challenges is to focus the model on obtaining more discriminative information. The authors observe that the edges of underwater objects are highly unique and can be distinguished from low-contrast or mimicry environments based on their edges. Motivated by this observation, an Edge-guided Representation Learning Network, termed ERL-Net is proposed, that aims to achieve discriminative representation learning and aggregation under the guidance of edge cues. Firstly, an edge-guided attention module is introduced to model the explicit boundary information, which generates more discriminative features. Secondly, a hierarchical feature aggregation module is proposed to aggregate the multi-scale discriminative features by regrouping them into three levels, effectively aggregating global and local information for locating and recognising underwater objects. Finally, a wide and asymmetric receptive field block is proposed to enable features to have a wider receptive field, allowing the model to focus on smaller object information. Comprehensive experiments on three challenging underwater datasets show that our method achieves superior performance on the UOD task.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.