Hongli Wang, Jiashu Sun, Dongcheng He, Kang Zhao, Bo Qian and Feng Shi*,
{"title":"整合均相催化与异相催化的定义明确的催化系统","authors":"Hongli Wang, Jiashu Sun, Dongcheng He, Kang Zhao, Bo Qian and Feng Shi*, ","doi":"10.1021/acscatal.4c0370110.1021/acscatal.4c03701","DOIUrl":null,"url":null,"abstract":"<p >Catalysis is an eternal theme in chemical research because it is indispensable in the chemical industry. Homogeneous and heterogeneous catalysts possess their individual advantages and disadvantages, which are significantly complementary. Therefore, it is highly desirable to develop an effective and practical method for merging the benefits of homogeneous and heterogeneous catalysis. Recently, the application of organic ligands to modify heterogeneous supported catalysts has emerged as an important method to combine the advantages of heterogeneous catalysis with those of homogeneous catalysis. Ligands modified supported catalysts offer the potential to overcome major challenges in tunability and stability for supported catalysts. This Viewpoint discusses the recent progress in the synthesis and application of ligand modified supported metal catalysts in organic reactions that merge the advantages of homo- and heterogeneous catalysis. We discuss the preparation and characterization, the origin of enhanced activities, and the structure–activity relationship of ligand modified supported metal catalysts. The challenges and perspectives for future progress in this field will be given. This viewpoint provides important insights into the development of well-defined heterogeneous catalysts for integrating homogeneous and heterogeneous catalysis.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16025–16043 16025–16043"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Defined Catalytic System for Integrating Homogeneous and Heterogeneous Catalysis\",\"authors\":\"Hongli Wang, Jiashu Sun, Dongcheng He, Kang Zhao, Bo Qian and Feng Shi*, \",\"doi\":\"10.1021/acscatal.4c0370110.1021/acscatal.4c03701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalysis is an eternal theme in chemical research because it is indispensable in the chemical industry. Homogeneous and heterogeneous catalysts possess their individual advantages and disadvantages, which are significantly complementary. Therefore, it is highly desirable to develop an effective and practical method for merging the benefits of homogeneous and heterogeneous catalysis. Recently, the application of organic ligands to modify heterogeneous supported catalysts has emerged as an important method to combine the advantages of heterogeneous catalysis with those of homogeneous catalysis. Ligands modified supported catalysts offer the potential to overcome major challenges in tunability and stability for supported catalysts. This Viewpoint discusses the recent progress in the synthesis and application of ligand modified supported metal catalysts in organic reactions that merge the advantages of homo- and heterogeneous catalysis. We discuss the preparation and characterization, the origin of enhanced activities, and the structure–activity relationship of ligand modified supported metal catalysts. The challenges and perspectives for future progress in this field will be given. This viewpoint provides important insights into the development of well-defined heterogeneous catalysts for integrating homogeneous and heterogeneous catalysis.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"14 21\",\"pages\":\"16025–16043 16025–16043\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c03701\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c03701","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Well-Defined Catalytic System for Integrating Homogeneous and Heterogeneous Catalysis
Catalysis is an eternal theme in chemical research because it is indispensable in the chemical industry. Homogeneous and heterogeneous catalysts possess their individual advantages and disadvantages, which are significantly complementary. Therefore, it is highly desirable to develop an effective and practical method for merging the benefits of homogeneous and heterogeneous catalysis. Recently, the application of organic ligands to modify heterogeneous supported catalysts has emerged as an important method to combine the advantages of heterogeneous catalysis with those of homogeneous catalysis. Ligands modified supported catalysts offer the potential to overcome major challenges in tunability and stability for supported catalysts. This Viewpoint discusses the recent progress in the synthesis and application of ligand modified supported metal catalysts in organic reactions that merge the advantages of homo- and heterogeneous catalysis. We discuss the preparation and characterization, the origin of enhanced activities, and the structure–activity relationship of ligand modified supported metal catalysts. The challenges and perspectives for future progress in this field will be given. This viewpoint provides important insights into the development of well-defined heterogeneous catalysts for integrating homogeneous and heterogeneous catalysis.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.