Marcus Bentzen, Vojtěch Lindauer, Pavel Mokrý, Ragnhild Elizabeth Aune, Julia Glaum
{"title":"水性 BaTiO3 粉末悬浮液的长期浸出动力学和溶液化学性质:支持实验的数值模型。","authors":"Marcus Bentzen, Vojtěch Lindauer, Pavel Mokrý, Ragnhild Elizabeth Aune, Julia Glaum","doi":"10.1039/d4tb01708k","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of lead-free perovskite materials with favorable toxicity profiles has made them candidates for <i>in vivo</i> and environmental applications. However, their tendency to leach A-site cations raises concerns about toxicity, catalytic efficiency, and slurry properties. The present study investigates the long-term leaching kinetics of BaTiO<sub>3</sub> powders over 31 days in aqueous solutions of varying pH levels. Using ICP-MS analysis and a numerical model based on the Unreacted Shrinking Core (USC) principle. The study extends the understanding of BaTiO<sub>3</sub> stability beyond previously reported timeframes. The findings highlight the material's long-term stability, with implications for biomedical and environmental applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term leaching kinetics and solution chemistry of aqueous BaTiO<sub>3</sub> powder suspensions: a numerical model supported experiment.\",\"authors\":\"Marcus Bentzen, Vojtěch Lindauer, Pavel Mokrý, Ragnhild Elizabeth Aune, Julia Glaum\",\"doi\":\"10.1039/d4tb01708k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of lead-free perovskite materials with favorable toxicity profiles has made them candidates for <i>in vivo</i> and environmental applications. However, their tendency to leach A-site cations raises concerns about toxicity, catalytic efficiency, and slurry properties. The present study investigates the long-term leaching kinetics of BaTiO<sub>3</sub> powders over 31 days in aqueous solutions of varying pH levels. Using ICP-MS analysis and a numerical model based on the Unreacted Shrinking Core (USC) principle. The study extends the understanding of BaTiO<sub>3</sub> stability beyond previously reported timeframes. The findings highlight the material's long-term stability, with implications for biomedical and environmental applications.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb01708k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01708k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-term leaching kinetics and solution chemistry of aqueous BaTiO3 powder suspensions: a numerical model supported experiment.
The advent of lead-free perovskite materials with favorable toxicity profiles has made them candidates for in vivo and environmental applications. However, their tendency to leach A-site cations raises concerns about toxicity, catalytic efficiency, and slurry properties. The present study investigates the long-term leaching kinetics of BaTiO3 powders over 31 days in aqueous solutions of varying pH levels. Using ICP-MS analysis and a numerical model based on the Unreacted Shrinking Core (USC) principle. The study extends the understanding of BaTiO3 stability beyond previously reported timeframes. The findings highlight the material's long-term stability, with implications for biomedical and environmental applications.