{"title":"SIS 性别结构甲型流感模型,在不同规模的开放人群中具有正病死率。","authors":"Muntaser Safan, Bayan Humadi","doi":"10.3934/mbe.2024306","DOIUrl":null,"url":null,"abstract":"<p><p>This work aims to study the role of sex disparities on the overall outcome of influenza A disease. Therefore, the classical Susceptible-Infected-Susceptible (SIS) endemic model was extended to include the impact of sex disparities on the overall dynamics of influenza A infection which spreads in an open population with a varying size, and took the potential lethality of the infection. The model was mathematically analyzed, where the equilibrium and bifurcation analyses were established. The model was shown to undergo a backward bifurcation at $ \\mathcal{R}_0 = 1 $, for certain range of the model parameters, where $ \\mathcal{R}_0 $ is the basic reproduction number of the model. The asymptotic stability of the equilibria was numerically investigated, and the effective threshold was determined. The differences in susceptibility, transmissibility and case fatality (of females with respect to males) are shown to remarkably affect the disease outcomes. Simulations were performed to illustrate the theoretical results.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 8","pages":"6975-7011"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An SIS sex-structured influenza A model with positive case fatality in an open population with varying size.\",\"authors\":\"Muntaser Safan, Bayan Humadi\",\"doi\":\"10.3934/mbe.2024306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work aims to study the role of sex disparities on the overall outcome of influenza A disease. Therefore, the classical Susceptible-Infected-Susceptible (SIS) endemic model was extended to include the impact of sex disparities on the overall dynamics of influenza A infection which spreads in an open population with a varying size, and took the potential lethality of the infection. The model was mathematically analyzed, where the equilibrium and bifurcation analyses were established. The model was shown to undergo a backward bifurcation at $ \\\\mathcal{R}_0 = 1 $, for certain range of the model parameters, where $ \\\\mathcal{R}_0 $ is the basic reproduction number of the model. The asymptotic stability of the equilibria was numerically investigated, and the effective threshold was determined. The differences in susceptibility, transmissibility and case fatality (of females with respect to males) are shown to remarkably affect the disease outcomes. Simulations were performed to illustrate the theoretical results.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 8\",\"pages\":\"6975-7011\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024306\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
An SIS sex-structured influenza A model with positive case fatality in an open population with varying size.
This work aims to study the role of sex disparities on the overall outcome of influenza A disease. Therefore, the classical Susceptible-Infected-Susceptible (SIS) endemic model was extended to include the impact of sex disparities on the overall dynamics of influenza A infection which spreads in an open population with a varying size, and took the potential lethality of the infection. The model was mathematically analyzed, where the equilibrium and bifurcation analyses were established. The model was shown to undergo a backward bifurcation at $ \mathcal{R}_0 = 1 $, for certain range of the model parameters, where $ \mathcal{R}_0 $ is the basic reproduction number of the model. The asymptotic stability of the equilibria was numerically investigated, and the effective threshold was determined. The differences in susceptibility, transmissibility and case fatality (of females with respect to males) are shown to remarkably affect the disease outcomes. Simulations were performed to illustrate the theoretical results.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).