{"title":"山羊步态神经网络模型","authors":"Liqin Liu, Chunrui Zhang","doi":"10.3934/mbe.2024302","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 8","pages":"6898-6914"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network model for goat gait.\",\"authors\":\"Liqin Liu, Chunrui Zhang\",\"doi\":\"10.3934/mbe.2024302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 8\",\"pages\":\"6898-6914\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024302\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024302","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).