{"title":"硝酸甲藻属(Methylophaga nitratireducenticrescens)菌株 JAM1T 和 GP59 在缺氧和缺氧培养条件下的反硝化基因表达谱不同。","authors":"Livie Lestin, Richard Villemur","doi":"10.7717/peerj.18361","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Strain JAM1<sup>T</sup> and strain GP59 of the methylotrophic, bacterial species <i>Methylophaga nitratireducenticrescens</i> were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate ( <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> ) reduction. Strain JAM1<sup>T</sup> can reduce <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to nitrite ( <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> ) but not <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to nitric oxide (NO) as it lacks a NO-forming <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reductase. Strain GP59 on the other hand can carry the complete reduction of <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to N<sub>2</sub>. Strain GP59 cultured under anoxic conditions shows a 24-48h lag phase before <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction occurs. In strain JAM1<sup>T</sup> cultures, <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction begins immediately with accumulation of <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . Furthermore, <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> is reduced under oxic conditions in strain JAM1<sup>T</sup> cultures, which does not appear in strain GP59 cultures. These distinct characters suggest differences in the regulation pathways impacting the expression of denitrification genes, and ultimately growth.</p><p><strong>Methods: </strong>Both strains were cultured under oxic conditions either with or without <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> , or under anoxic conditions with <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . Transcript levels of selected denitrification genes (<i>nar1</i> and <i>nar2</i> encoding <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reductases, <i>nirK</i> encoding <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reductase, <i>narK12f</i> encoding <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> / <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> transporter) and regulatory genes (<i>narXL</i> and <i>fnr</i>) were determined by quantitative reverse transcription polymerase chain reaction. We also derived the transcriptomes of these cultures and determined their relative gene expression profiles.</p><p><strong>Results: </strong>The transcript levels of <i>nar1</i> were very low in strain GP59 cultured under oxic conditions without <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . These levels were 37 times higher in strain JAM1<sup>T</sup> cultured under the same conditions, suggesting that Nar1 was expressed at sufficient levels in strain JAM1<sup>T</sup> before the inoculation of the oxic and anoxic cultures to carry <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction with no lag phase. Transcriptomic analysis revealed that each strain had distinct relative gene expression profiles, and oxygen had high impact on these profiles. Among denitrification genes and regulatory genes, the <i>nnrS3</i> gene encoding factor involved in NO-response function had its relative gene transcript levels 5 to 10 times higher in strain GP59 cultured under oxic conditions with <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> than those in both strains cultured under oxic conditions without <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . Since NnrS senses NO, these results suggest that strain GP59 reduced <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to NO under oxic conditions, but because of the oxic environment, NO is oxidized back to <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> by flavohemoproteins (NO dioxygenase; Hmp), explaining why <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction is not observed in strain GP59 cultured under oxic conditions.</p><p><strong>Conclusions: </strong>Understanding how these two strains manage the regulation of the denitrification pathway provided some clues on how they response to environmental changes in the original biofilm community, and, by extension, how this community adapts in providing efficient denitrifying activities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526790/pdf/","citationCount":"0","resultStr":"{\"title\":\"The bacterial strains JAM1<sup>T</sup> and GP59 of the species <i>Methylophaga nitratireducenticrescens</i> differ in their expression profiles of denitrification genes in oxic and anoxic cultures.\",\"authors\":\"Livie Lestin, Richard Villemur\",\"doi\":\"10.7717/peerj.18361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Strain JAM1<sup>T</sup> and strain GP59 of the methylotrophic, bacterial species <i>Methylophaga nitratireducenticrescens</i> were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate ( <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> ) reduction. Strain JAM1<sup>T</sup> can reduce <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to nitrite ( <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> ) but not <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to nitric oxide (NO) as it lacks a NO-forming <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reductase. Strain GP59 on the other hand can carry the complete reduction of <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to N<sub>2</sub>. Strain GP59 cultured under anoxic conditions shows a 24-48h lag phase before <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction occurs. In strain JAM1<sup>T</sup> cultures, <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction begins immediately with accumulation of <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . Furthermore, <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> is reduced under oxic conditions in strain JAM1<sup>T</sup> cultures, which does not appear in strain GP59 cultures. These distinct characters suggest differences in the regulation pathways impacting the expression of denitrification genes, and ultimately growth.</p><p><strong>Methods: </strong>Both strains were cultured under oxic conditions either with or without <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> , or under anoxic conditions with <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . Transcript levels of selected denitrification genes (<i>nar1</i> and <i>nar2</i> encoding <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reductases, <i>nirK</i> encoding <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reductase, <i>narK12f</i> encoding <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> / <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> transporter) and regulatory genes (<i>narXL</i> and <i>fnr</i>) were determined by quantitative reverse transcription polymerase chain reaction. We also derived the transcriptomes of these cultures and determined their relative gene expression profiles.</p><p><strong>Results: </strong>The transcript levels of <i>nar1</i> were very low in strain GP59 cultured under oxic conditions without <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . These levels were 37 times higher in strain JAM1<sup>T</sup> cultured under the same conditions, suggesting that Nar1 was expressed at sufficient levels in strain JAM1<sup>T</sup> before the inoculation of the oxic and anoxic cultures to carry <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction with no lag phase. Transcriptomic analysis revealed that each strain had distinct relative gene expression profiles, and oxygen had high impact on these profiles. Among denitrification genes and regulatory genes, the <i>nnrS3</i> gene encoding factor involved in NO-response function had its relative gene transcript levels 5 to 10 times higher in strain GP59 cultured under oxic conditions with <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> than those in both strains cultured under oxic conditions without <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> . Since NnrS senses NO, these results suggest that strain GP59 reduced <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> to NO under oxic conditions, but because of the oxic environment, NO is oxidized back to <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> by flavohemoproteins (NO dioxygenase; Hmp), explaining why <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> reduction is not observed in strain GP59 cultured under oxic conditions.</p><p><strong>Conclusions: </strong>Understanding how these two strains manage the regulation of the denitrification pathway provided some clues on how they response to environmental changes in the original biofilm community, and, by extension, how this community adapts in providing efficient denitrifying activities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj.18361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
背景:从流化床、甲醇喂养的海洋反硝化系统中形成的生物膜微生物群落中分离出了滋甲基细菌物种 Methylophaga nitratireducenticrescens 的菌株 JAM1T 和菌株 GP59。尽管起源相同,但这两种菌株在硝酸盐(NO 3 -)还原动态方面表现出不同的生理特征。菌株 JAM1T 能将 NO 3 还原成亚硝酸盐(NO 2 -),但不能将 NO 2 还原成一氧化氮(NO),因为它缺乏 NO 生成 NO 2 - 的还原酶。而菌株 GP59 则能将 NO 3 还原成一氧化氮。在缺氧条件下培养的 GP59 菌株在 NO 3 还原之前会出现 24-48 小时的滞后期。在菌株 JAM1T 的培养过程中,NO 3 - 的还原随着 NO 2 - 的积累立即开始。此外,在菌株 JAM1T 培养物中,NO 3 - 在缺氧条件下会被还原,而在菌株 GP59 培养物中则不会出现这种情况。这些不同的特征表明,影响反硝化基因表达并最终影响生长的调节途径存在差异:方法:在有或没有 NO 3 - 的缺氧条件下,或在有 NO 3 - 的缺氧条件下培养这两种菌株。通过定量反转录聚合酶链反应测定了部分反硝化基因(编码 NO 3 - 还原酶的 nar1 和 nar2、编码 NO 2 - 还原酶的 nirK、编码 NO 3 - / NO 2 - 转运体的 narK12f)和调控基因(narXL 和 fnr)的转录水平。我们还获得了这些培养物的转录组,并确定了它们的相对基因表达谱:结果:在没有 NO 3 - 的缺氧条件下培养的菌株 GP59 中,nar1 的转录水平非常低。在相同条件下培养的菌株JAM1T中,Nar1的转录水平是GP59的37倍,这表明在接种缺氧和缺氧培养物之前,Nar1在菌株JAM1T中有足够的表达量,可以在无滞后期的情况下进行NO 3-还原。转录组分析表明,每个菌株都有不同的相对基因表达谱,氧气对这些表达谱的影响很大。在反硝化基因和调控基因中,编码参与 NO 响应功能因子的 nnrS3 基因在有 NO 3 - 的缺氧条件下培养的菌株 GP59 中的相对基因转录水平是在无 NO 3 - 的缺氧条件下培养的两个菌株的 5 至 10 倍。由于 NnrS 感知 NO,这些结果表明菌株 GP59 在缺氧条件下将 NO 3 - 还原为 NO,但由于缺氧环境,NO 被黄血蛋白(NO 二氧酶;Hmp)氧化回 NO 3 -,这就解释了为什么在缺氧条件下培养的菌株 GP59 没有观察到 NO 3 - 还原:结论:了解这两种菌株如何管理反硝化途径的调节,为它们如何应对原始生物膜群落中的环境变化提供了一些线索,进而也为了解该群落如何适应提供高效反硝化活动提供了一些线索。
The bacterial strains JAM1T and GP59 of the species Methylophaga nitratireducenticrescens differ in their expression profiles of denitrification genes in oxic and anoxic cultures.
Background: Strain JAM1T and strain GP59 of the methylotrophic, bacterial species Methylophaga nitratireducenticrescens were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate ( ) reduction. Strain JAM1T can reduce to nitrite ( ) but not to nitric oxide (NO) as it lacks a NO-forming reductase. Strain GP59 on the other hand can carry the complete reduction of to N2. Strain GP59 cultured under anoxic conditions shows a 24-48h lag phase before reduction occurs. In strain JAM1T cultures, reduction begins immediately with accumulation of . Furthermore, is reduced under oxic conditions in strain JAM1T cultures, which does not appear in strain GP59 cultures. These distinct characters suggest differences in the regulation pathways impacting the expression of denitrification genes, and ultimately growth.
Methods: Both strains were cultured under oxic conditions either with or without , or under anoxic conditions with . Transcript levels of selected denitrification genes (nar1 and nar2 encoding reductases, nirK encoding reductase, narK12f encoding / transporter) and regulatory genes (narXL and fnr) were determined by quantitative reverse transcription polymerase chain reaction. We also derived the transcriptomes of these cultures and determined their relative gene expression profiles.
Results: The transcript levels of nar1 were very low in strain GP59 cultured under oxic conditions without . These levels were 37 times higher in strain JAM1T cultured under the same conditions, suggesting that Nar1 was expressed at sufficient levels in strain JAM1T before the inoculation of the oxic and anoxic cultures to carry reduction with no lag phase. Transcriptomic analysis revealed that each strain had distinct relative gene expression profiles, and oxygen had high impact on these profiles. Among denitrification genes and regulatory genes, the nnrS3 gene encoding factor involved in NO-response function had its relative gene transcript levels 5 to 10 times higher in strain GP59 cultured under oxic conditions with than those in both strains cultured under oxic conditions without . Since NnrS senses NO, these results suggest that strain GP59 reduced to NO under oxic conditions, but because of the oxic environment, NO is oxidized back to by flavohemoproteins (NO dioxygenase; Hmp), explaining why reduction is not observed in strain GP59 cultured under oxic conditions.
Conclusions: Understanding how these two strains manage the regulation of the denitrification pathway provided some clues on how they response to environmental changes in the original biofilm community, and, by extension, how this community adapts in providing efficient denitrifying activities.