{"title":"解开氧化还原密码,改善人类健康和疾病的生理研究。","authors":"Josh Thorley","doi":"10.14814/phy2.70105","DOIUrl":null,"url":null,"abstract":"<p><p>Redox reactions, involving electron transfer, are critical to human physiology. However, progress in understanding redox metabolism is hindered by flawed analytical methods. This review highlights emerging techniques that promise to revolutionize redox research, enhancing our comprehension of human health and disease. Oxygen, vital for aerobic metabolism, also produces reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. While historically seen as harmful, ROS at low concentrations are now recognized as key regulators of cell signaling. A balance between ROS and antioxidants, known as redox balance, is crucial, and deviations can lead to oxidative stress. Recent studies have distinguished beneficial \"oxidative eustress\" from harmful \"oxidative distress.\" New techniques, such as advanced mass spectrometry and high-throughput immunoassays, offer improved accuracy in measuring redox states and oxidative damage. These advancements are pivotal for understanding redox signaling, cysteine oxidation, and their implications for disease. Looking ahead, the development of precision redox medicine could lead to better treatments for oxidative stress-related diseases and foster interventions promoting health.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the redox code to improve physiological research in human health and disease.\",\"authors\":\"Josh Thorley\",\"doi\":\"10.14814/phy2.70105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox reactions, involving electron transfer, are critical to human physiology. However, progress in understanding redox metabolism is hindered by flawed analytical methods. This review highlights emerging techniques that promise to revolutionize redox research, enhancing our comprehension of human health and disease. Oxygen, vital for aerobic metabolism, also produces reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. While historically seen as harmful, ROS at low concentrations are now recognized as key regulators of cell signaling. A balance between ROS and antioxidants, known as redox balance, is crucial, and deviations can lead to oxidative stress. Recent studies have distinguished beneficial \\\"oxidative eustress\\\" from harmful \\\"oxidative distress.\\\" New techniques, such as advanced mass spectrometry and high-throughput immunoassays, offer improved accuracy in measuring redox states and oxidative damage. These advancements are pivotal for understanding redox signaling, cysteine oxidation, and their implications for disease. Looking ahead, the development of precision redox medicine could lead to better treatments for oxidative stress-related diseases and foster interventions promoting health.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Unraveling the redox code to improve physiological research in human health and disease.
Redox reactions, involving electron transfer, are critical to human physiology. However, progress in understanding redox metabolism is hindered by flawed analytical methods. This review highlights emerging techniques that promise to revolutionize redox research, enhancing our comprehension of human health and disease. Oxygen, vital for aerobic metabolism, also produces reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. While historically seen as harmful, ROS at low concentrations are now recognized as key regulators of cell signaling. A balance between ROS and antioxidants, known as redox balance, is crucial, and deviations can lead to oxidative stress. Recent studies have distinguished beneficial "oxidative eustress" from harmful "oxidative distress." New techniques, such as advanced mass spectrometry and high-throughput immunoassays, offer improved accuracy in measuring redox states and oxidative damage. These advancements are pivotal for understanding redox signaling, cysteine oxidation, and their implications for disease. Looking ahead, the development of precision redox medicine could lead to better treatments for oxidative stress-related diseases and foster interventions promoting health.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.