与运动相关的振荡揭示了识别记忆过程中感觉运动过程的参与。

IF 2.2 4区 心理学 Q3 BEHAVIORAL SCIENCES
Yvonne Y. Chen , Kathryn J.M. Lambert , Christopher R. Madan , Anthony Singhal
{"title":"与运动相关的振荡揭示了识别记忆过程中感觉运动过程的参与。","authors":"Yvonne Y. Chen ,&nbsp;Kathryn J.M. Lambert ,&nbsp;Christopher R. Madan ,&nbsp;Anthony Singhal","doi":"10.1016/j.nlm.2024.108003","DOIUrl":null,"url":null,"abstract":"<div><div>Certain object properties may render an item as more memorable than others. One such property is manipulability, or the extent to which an object can be interacted with using our hands. This study sought to determine if the manipulability of an item modulates memory task performance on both a behavioural and neural level. We recorded electroencephalography (EEG) from a large sample of right-handed individuals (N = 53) during a visual item recognition memory task. The task contained stimuli of both high and low manipulability. Analysis focused on activity in the theta rhythm (3.5–7 Hz), which has been implicated in sensorimotor integration, and the mu rhythm (8–14 Hz), the primary oscillation associated with sensorimotor related behaviours. At both encoding and retrieval, theta oscillations were greater over the left motor region for high manipulability stimuli, suggesting that an item’s sensorimotor properties are assessed immediately upon presentation. Manipulability did not affect activity in the mu rhythm. However, mu oscillations over the left motor region were lower during the retrieval of old versus new items and response time was faster for old items, aligning with the cortical reinstatement hypothesis. These results collectively reveal an association between motor oscillations and memory processes, highlight the involvement of sensorimotor processing at both encoding and retrieval.</div></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"216 ","pages":"Article 108003"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motor-related oscillations reveal the involvement of sensorimotor processes during recognition memory\",\"authors\":\"Yvonne Y. Chen ,&nbsp;Kathryn J.M. Lambert ,&nbsp;Christopher R. Madan ,&nbsp;Anthony Singhal\",\"doi\":\"10.1016/j.nlm.2024.108003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Certain object properties may render an item as more memorable than others. One such property is manipulability, or the extent to which an object can be interacted with using our hands. This study sought to determine if the manipulability of an item modulates memory task performance on both a behavioural and neural level. We recorded electroencephalography (EEG) from a large sample of right-handed individuals (N = 53) during a visual item recognition memory task. The task contained stimuli of both high and low manipulability. Analysis focused on activity in the theta rhythm (3.5–7 Hz), which has been implicated in sensorimotor integration, and the mu rhythm (8–14 Hz), the primary oscillation associated with sensorimotor related behaviours. At both encoding and retrieval, theta oscillations were greater over the left motor region for high manipulability stimuli, suggesting that an item’s sensorimotor properties are assessed immediately upon presentation. Manipulability did not affect activity in the mu rhythm. However, mu oscillations over the left motor region were lower during the retrieval of old versus new items and response time was faster for old items, aligning with the cortical reinstatement hypothesis. These results collectively reveal an association between motor oscillations and memory processes, highlight the involvement of sensorimotor processing at both encoding and retrieval.</div></div>\",\"PeriodicalId\":19102,\"journal\":{\"name\":\"Neurobiology of Learning and Memory\",\"volume\":\"216 \",\"pages\":\"Article 108003\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Learning and Memory\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107474272400114X\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107474272400114X","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

物品的某些特性可能会使其比其他物品更令人难忘。其中一个特性就是可操作性,或者说一个物品可以用我们的手与之互动的程度。本研究试图确定物品的可操作性是否会在行为和神经层面上调节记忆任务的表现。我们记录了一个大样本右撇子(53 人)在视觉项目识别记忆任务中的脑电图(EEG)。该任务包含高可操作性和低可操作性两种刺激。分析的重点是θ节律(3.5-7赫兹)和μ节律(8-14赫兹)的活动,前者与感觉运动整合有关,后者则是与感觉运动相关行为有关的主要振荡。在编码和检索时,高可操作性刺激的左侧运动区的θ振荡更大,这表明项目的感觉运动特性在呈现后立即得到评估。可操作性并不影响μ节律的活动。然而,在检索新旧物品时,左侧运动区的μ振荡较低,且对旧物品的反应时间更快,这与皮层恢复假说一致。这些结果共同揭示了运动振荡与记忆过程之间的联系,突出了编码和检索过程中感觉运动处理的参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motor-related oscillations reveal the involvement of sensorimotor processes during recognition memory
Certain object properties may render an item as more memorable than others. One such property is manipulability, or the extent to which an object can be interacted with using our hands. This study sought to determine if the manipulability of an item modulates memory task performance on both a behavioural and neural level. We recorded electroencephalography (EEG) from a large sample of right-handed individuals (N = 53) during a visual item recognition memory task. The task contained stimuli of both high and low manipulability. Analysis focused on activity in the theta rhythm (3.5–7 Hz), which has been implicated in sensorimotor integration, and the mu rhythm (8–14 Hz), the primary oscillation associated with sensorimotor related behaviours. At both encoding and retrieval, theta oscillations were greater over the left motor region for high manipulability stimuli, suggesting that an item’s sensorimotor properties are assessed immediately upon presentation. Manipulability did not affect activity in the mu rhythm. However, mu oscillations over the left motor region were lower during the retrieval of old versus new items and response time was faster for old items, aligning with the cortical reinstatement hypothesis. These results collectively reveal an association between motor oscillations and memory processes, highlight the involvement of sensorimotor processing at both encoding and retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
7.40%
发文量
77
审稿时长
12.6 weeks
期刊介绍: Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信