靶向巨噬细胞中的 TET3 为治疗子宫内膜异位症提供了一种概念性策略。

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Hossein Hosseinirad, Md Saidur Rahman, Jae-Wook Jeong
{"title":"靶向巨噬细胞中的 TET3 为治疗子宫内膜异位症提供了一种概念性策略。","authors":"Hossein Hosseinirad, Md Saidur Rahman, Jae-Wook Jeong","doi":"10.1172/JCI185421","DOIUrl":null,"url":null,"abstract":"<p><p>Endometriosis, characterized by the presence of endometrial-like tissue outside the uterus, is a condition associated with pain and infertility. In this issue of the JCI, Lv et al. illuminate the critical pathophysiological role of the ten-eleven translocation 3 (TET3) in endometriosis. TET3 expression levels were higher in macrophages of endometriotic lesions compared with control endometrial tissue, implicating TET3 as a contributing factor in the chronic inflammation that occurs in endometriosis. TGF-β1 and MCP1 are present in the peritoneal cavity of women with endometriosis, and macrophage exposure to these factors resulted in upregulation of TET3, thereby promoting their survival. Notably, Bobcat339, a selective TET inhibitor, induced apoptosis in these macrophages. Further, myeloid-specific TET3 loss reduced endometriosis in mice. RNA-Seq analysis following TET3 knockdown revealed alterations in cytokine signaling and cell-death pathways, underscoring the therapeutic potential of targeting TET3 in macrophages as a strategy for managing endometriosis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 21","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting TET3 in macrophages provides a concept strategy for the treatment of endometriosis.\",\"authors\":\"Hossein Hosseinirad, Md Saidur Rahman, Jae-Wook Jeong\",\"doi\":\"10.1172/JCI185421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometriosis, characterized by the presence of endometrial-like tissue outside the uterus, is a condition associated with pain and infertility. In this issue of the JCI, Lv et al. illuminate the critical pathophysiological role of the ten-eleven translocation 3 (TET3) in endometriosis. TET3 expression levels were higher in macrophages of endometriotic lesions compared with control endometrial tissue, implicating TET3 as a contributing factor in the chronic inflammation that occurs in endometriosis. TGF-β1 and MCP1 are present in the peritoneal cavity of women with endometriosis, and macrophage exposure to these factors resulted in upregulation of TET3, thereby promoting their survival. Notably, Bobcat339, a selective TET inhibitor, induced apoptosis in these macrophages. Further, myeloid-specific TET3 loss reduced endometriosis in mice. RNA-Seq analysis following TET3 knockdown revealed alterations in cytokine signaling and cell-death pathways, underscoring the therapeutic potential of targeting TET3 in macrophages as a strategy for managing endometriosis.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\"134 21\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI185421\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI185421","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜异位症的特征是子宫内膜样组织存在于子宫腔外,是一种与疼痛和不孕症相关的疾病。在本期 JCI 杂志上,Lv 等人揭示了十-十一易位 3(TET3)在子宫内膜异位症中的关键病理生理作用。与对照子宫内膜组织相比,TET3在子宫内膜异位症病变巨噬细胞中的表达水平更高,这表明TET3是子宫内膜异位症慢性炎症的一个诱因。患有子宫内膜异位症的妇女腹腔中存在 TGF-β1 和 MCP1,巨噬细胞暴露于这些因子会导致 TET3 上调,从而促进其存活。值得注意的是,选择性 TET 抑制剂 Bobcat339 能诱导这些巨噬细胞凋亡。此外,骨髓特异性 TET3 的缺失可减少小鼠的子宫内膜异位症。TET3敲除后的RNA-Seq分析揭示了细胞因子信号转导和细胞死亡通路的改变,强调了以巨噬细胞中的TET3为靶点作为治疗子宫内膜异位症策略的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting TET3 in macrophages provides a concept strategy for the treatment of endometriosis.

Endometriosis, characterized by the presence of endometrial-like tissue outside the uterus, is a condition associated with pain and infertility. In this issue of the JCI, Lv et al. illuminate the critical pathophysiological role of the ten-eleven translocation 3 (TET3) in endometriosis. TET3 expression levels were higher in macrophages of endometriotic lesions compared with control endometrial tissue, implicating TET3 as a contributing factor in the chronic inflammation that occurs in endometriosis. TGF-β1 and MCP1 are present in the peritoneal cavity of women with endometriosis, and macrophage exposure to these factors resulted in upregulation of TET3, thereby promoting their survival. Notably, Bobcat339, a selective TET inhibitor, induced apoptosis in these macrophages. Further, myeloid-specific TET3 loss reduced endometriosis in mice. RNA-Seq analysis following TET3 knockdown revealed alterations in cytokine signaling and cell-death pathways, underscoring the therapeutic potential of targeting TET3 in macrophages as a strategy for managing endometriosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信