紫杉叶素通过调节SIRT1/p53和PI3K/AKT信号通路改善D-半乳糖诱导的小鼠海马神经元HT-22细胞衰老。

IF 1.3 3区 医学 Q3 CHEMISTRY, APPLIED
Xing-Long Liu, Shuang Zu, Hao Yue, An-Ning Li, Ping-Ping Sun, Jian-Guo Li, Li Yan, Li-Na Ma, Shuai Zhang
{"title":"紫杉叶素通过调节SIRT1/p53和PI3K/AKT信号通路改善D-半乳糖诱导的小鼠海马神经元HT-22细胞衰老。","authors":"Xing-Long Liu, Shuang Zu, Hao Yue, An-Ning Li, Ping-Ping Sun, Jian-Guo Li, Li Yan, Li-Na Ma, Shuai Zhang","doi":"10.1080/10286020.2024.2421925","DOIUrl":null,"url":null,"abstract":"<p><p>By establishing an <i>in vitro</i> model of D-Gal-induced brain neuronal cell (HT-22) senescence, it was found that TAX treatment significantly increased the activities of SOD and GSH, while decreasing MDA levels in aging HT-22 cells, indicating that TAX effectively restored the total antioxidant capacity and antioxidant enzyme activity of aging HT-22 cells induced by D-Gal, and attenuated cellular oxidative stress injury. In addition, taxifolin could also protect HT-22 cells from aging by up-regulating SIRT1 while reducing the expression of Ac-p53, indicating that TAX may be an active substance that can effectively delay cell aging.</p>","PeriodicalId":15180,"journal":{"name":"Journal of Asian Natural Products Research","volume":" ","pages":"1-17"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxifolin ameliorates the D-galactose-induced aging of mouse hippocampal neurons HT-22 cells through modulating SIRT1/p53 and PI3K/AKT signaling pathways.\",\"authors\":\"Xing-Long Liu, Shuang Zu, Hao Yue, An-Ning Li, Ping-Ping Sun, Jian-Guo Li, Li Yan, Li-Na Ma, Shuai Zhang\",\"doi\":\"10.1080/10286020.2024.2421925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By establishing an <i>in vitro</i> model of D-Gal-induced brain neuronal cell (HT-22) senescence, it was found that TAX treatment significantly increased the activities of SOD and GSH, while decreasing MDA levels in aging HT-22 cells, indicating that TAX effectively restored the total antioxidant capacity and antioxidant enzyme activity of aging HT-22 cells induced by D-Gal, and attenuated cellular oxidative stress injury. In addition, taxifolin could also protect HT-22 cells from aging by up-regulating SIRT1 while reducing the expression of Ac-p53, indicating that TAX may be an active substance that can effectively delay cell aging.</p>\",\"PeriodicalId\":15180,\"journal\":{\"name\":\"Journal of Asian Natural Products Research\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Natural Products Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10286020.2024.2421925\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Natural Products Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10286020.2024.2421925","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过建立体外D-Gal诱导的脑神经细胞(HT-22)衰老模型,发现TAX处理可显著提高衰老HT-22细胞的SOD和GSH活性,同时降低MDA水平,表明TAX能有效恢复D-Gal诱导的衰老HT-22细胞的总抗氧化能力和抗氧化酶活性,减轻细胞氧化应激损伤。此外,Taxifolin还能通过上调SIRT1而降低Ac-p53的表达,从而保护HT-22细胞免于衰老,这表明TAX可能是一种能有效延缓细胞衰老的活性物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taxifolin ameliorates the D-galactose-induced aging of mouse hippocampal neurons HT-22 cells through modulating SIRT1/p53 and PI3K/AKT signaling pathways.

By establishing an in vitro model of D-Gal-induced brain neuronal cell (HT-22) senescence, it was found that TAX treatment significantly increased the activities of SOD and GSH, while decreasing MDA levels in aging HT-22 cells, indicating that TAX effectively restored the total antioxidant capacity and antioxidant enzyme activity of aging HT-22 cells induced by D-Gal, and attenuated cellular oxidative stress injury. In addition, taxifolin could also protect HT-22 cells from aging by up-regulating SIRT1 while reducing the expression of Ac-p53, indicating that TAX may be an active substance that can effectively delay cell aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
47
审稿时长
2.3 months
期刊介绍: The Journal of Asian Natural Products Research (JANPR) publishes chemical and pharmaceutical studies in the English language in the field of natural product research on Asian ethnic medicine. The journal publishes work from scientists in Asian countries, e.g. China, Japan, Korea and India, including contributions from other countries concerning natural products of Asia. The journal is chemistry-orientated. Major fields covered are: isolation and structural elucidation of natural constituents (including those for non-medical uses), synthesis and transformation (including biosynthesis and biotransformation) of natural products, pharmacognosy, and allied topics. Biological evaluation of crude extracts are acceptable only as supporting data for pure isolates with well-characterized structures. All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymized refereeing by at least two expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信