基于三唑支架的 DPP-IV 抑制剂用于治疗 II 型糖尿病:分子对接和 SAR 见解。

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Saniya Shamim, Ozair Alam, Mukund Jha, Shagufi Nazar, Vishal Mathur, Shaheen Ali, Anam Iliyas, Kailash Chandra, Shaikh Mohd Aatif Jamil Ahmed, Mohd Javed Naim, Bushra Parveen
{"title":"基于三唑支架的 DPP-IV 抑制剂用于治疗 II 型糖尿病:分子对接和 SAR 见解。","authors":"Saniya Shamim, Ozair Alam, Mukund Jha, Shagufi Nazar, Vishal Mathur, Shaheen Ali, Anam Iliyas, Kailash Chandra, Shaikh Mohd Aatif Jamil Ahmed, Mohd Javed Naim, Bushra Parveen","doi":"10.2174/0115680266339313241021053225","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus, characterized as a chronic metabolic disorder or a polygenic syndrome; is increasing at a very fast pace among every group of the population worldwide. It arises due to the inability of the body to produce enough insulin (the hormone responsible for controlling blood sugar levels) or inability to utilize the insulin, leading to hyperglycaemic condition, which, if left uncontrolled gives rise to chronic microvascular and macrovascular complications like retinopathy, neuropathy, nephropathy, coronary artery disease, cognitive impairment, etc. Several therapeutic approaches are available for the treatment of diabetes; among which dipeptidyl peptidase (DPP-IV) inhibitors (gliptins) hold a significant place. DPP-IV is a multifunctional enzyme or a serine exopeptidase that plays an imperative role in cleaving bioactive molecules. DPP-IV causes the breakdown of incretin hormone (GLP-1: Glucagon-like peptide 1 and GIP: Glucose-dependent insulinotropic peptide) that is essential for controlling glycaemic levels in the body. Inhibition of DPP-IV enzyme (DPP-IV inhibitors: Sitagliptin, Saxagliptin, Linagliptin, Alogliptin) prevents this breakdown, thereby controlling blood glucose levels and saving the patients from deleterious effects of prolonged hyperglycaemic conditions. Triazole-based DPP-IV inhibitors are a significant class of drugs used to treat Type 2 diabetes mellitus in a dose-dependent manner. Clinical trials have demonstrated their efficacy as monotherapy or in combination with other antidiabetic agents. This review highlights the molecular docking studies and structure-activity relationship of potential synthetic derivatives that may act as lead molecules for future drug discovery and yield drug molecules with enhanced efficacy, potency and reduced toxicity profile.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triazole scaffold-based DPP-IV Inhibitors for the management of Type-II Diabetes Mellitus: Insight into Molecular Docking and SAR.\",\"authors\":\"Saniya Shamim, Ozair Alam, Mukund Jha, Shagufi Nazar, Vishal Mathur, Shaheen Ali, Anam Iliyas, Kailash Chandra, Shaikh Mohd Aatif Jamil Ahmed, Mohd Javed Naim, Bushra Parveen\",\"doi\":\"10.2174/0115680266339313241021053225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus, characterized as a chronic metabolic disorder or a polygenic syndrome; is increasing at a very fast pace among every group of the population worldwide. It arises due to the inability of the body to produce enough insulin (the hormone responsible for controlling blood sugar levels) or inability to utilize the insulin, leading to hyperglycaemic condition, which, if left uncontrolled gives rise to chronic microvascular and macrovascular complications like retinopathy, neuropathy, nephropathy, coronary artery disease, cognitive impairment, etc. Several therapeutic approaches are available for the treatment of diabetes; among which dipeptidyl peptidase (DPP-IV) inhibitors (gliptins) hold a significant place. DPP-IV is a multifunctional enzyme or a serine exopeptidase that plays an imperative role in cleaving bioactive molecules. DPP-IV causes the breakdown of incretin hormone (GLP-1: Glucagon-like peptide 1 and GIP: Glucose-dependent insulinotropic peptide) that is essential for controlling glycaemic levels in the body. Inhibition of DPP-IV enzyme (DPP-IV inhibitors: Sitagliptin, Saxagliptin, Linagliptin, Alogliptin) prevents this breakdown, thereby controlling blood glucose levels and saving the patients from deleterious effects of prolonged hyperglycaemic conditions. Triazole-based DPP-IV inhibitors are a significant class of drugs used to treat Type 2 diabetes mellitus in a dose-dependent manner. Clinical trials have demonstrated their efficacy as monotherapy or in combination with other antidiabetic agents. This review highlights the molecular docking studies and structure-activity relationship of potential synthetic derivatives that may act as lead molecules for future drug discovery and yield drug molecules with enhanced efficacy, potency and reduced toxicity profile.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266339313241021053225\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266339313241021053225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种慢性代谢紊乱或多基因综合征,在全球各个人群中的发病率都在快速上升。糖尿病是由于人体无法产生足够的胰岛素(负责控制血糖水平的激素)或无法利用胰岛素而导致的高血糖状态,如果不加以控制,会引起慢性微血管和大血管并发症,如视网膜病变、神经病变、肾病变、冠状动脉疾病、认知障碍等。目前有多种治疗糖尿病的方法,其中二肽基肽酶(DPP-IV)抑制剂(格列吡嗪)占有重要地位。DPP-IV 是一种多功能酶或丝氨酸外肽酶,在分解生物活性分子方面发挥着重要作用。DPP-IV 会导致增量素激素(GLP-1:胰高血糖素样肽 1 和 GIP:葡萄糖依赖性促胰岛素肽)的分解,而增量素激素对控制体内血糖水平至关重要。抑制 DPP-IV 酶(DPP-IV 抑制剂:西他列汀、沙格列汀、利纳列汀、阿格列汀)可防止这种分解,从而控制血糖水平,使患者免受长期高血糖的有害影响。三唑类 DPP-IV 抑制剂是以剂量依赖方式治疗 2 型糖尿病的一类重要药物。临床试验证明了它们作为单一疗法或与其他抗糖尿病药物联用的疗效。本综述重点介绍了潜在合成衍生物的分子对接研究和结构-活性关系,这些衍生物可能成为未来药物发现的先导分子,并产生具有更强疗效、效力和毒性特征的药物分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triazole scaffold-based DPP-IV Inhibitors for the management of Type-II Diabetes Mellitus: Insight into Molecular Docking and SAR.

Diabetes mellitus, characterized as a chronic metabolic disorder or a polygenic syndrome; is increasing at a very fast pace among every group of the population worldwide. It arises due to the inability of the body to produce enough insulin (the hormone responsible for controlling blood sugar levels) or inability to utilize the insulin, leading to hyperglycaemic condition, which, if left uncontrolled gives rise to chronic microvascular and macrovascular complications like retinopathy, neuropathy, nephropathy, coronary artery disease, cognitive impairment, etc. Several therapeutic approaches are available for the treatment of diabetes; among which dipeptidyl peptidase (DPP-IV) inhibitors (gliptins) hold a significant place. DPP-IV is a multifunctional enzyme or a serine exopeptidase that plays an imperative role in cleaving bioactive molecules. DPP-IV causes the breakdown of incretin hormone (GLP-1: Glucagon-like peptide 1 and GIP: Glucose-dependent insulinotropic peptide) that is essential for controlling glycaemic levels in the body. Inhibition of DPP-IV enzyme (DPP-IV inhibitors: Sitagliptin, Saxagliptin, Linagliptin, Alogliptin) prevents this breakdown, thereby controlling blood glucose levels and saving the patients from deleterious effects of prolonged hyperglycaemic conditions. Triazole-based DPP-IV inhibitors are a significant class of drugs used to treat Type 2 diabetes mellitus in a dose-dependent manner. Clinical trials have demonstrated their efficacy as monotherapy or in combination with other antidiabetic agents. This review highlights the molecular docking studies and structure-activity relationship of potential synthetic derivatives that may act as lead molecules for future drug discovery and yield drug molecules with enhanced efficacy, potency and reduced toxicity profile.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信