苯并咪唑和吡唑衍生物作为抗癌剂的结构-活性关系透视。

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Shital M Patil, Piyush Nikalje, Navnath Gavande, Kalyani D Asgaonkar, Vaishnavi Rathod
{"title":"苯并咪唑和吡唑衍生物作为抗癌剂的结构-活性关系透视。","authors":"Shital M Patil, Piyush Nikalje, Navnath Gavande, Kalyani D Asgaonkar, Vaishnavi Rathod","doi":"10.2174/0115680266343336241021080438","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.</p><p><strong>Objective: </strong>This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.</p><p><strong>Method: </strong>The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.</p><p><strong>Result: </strong>Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.</p><p><strong>Conclusion: </strong>Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Insight into the Structure-Activity Relationship of Benzimidazole and Pyrazole Derivatives as Anticancer Agents.\",\"authors\":\"Shital M Patil, Piyush Nikalje, Navnath Gavande, Kalyani D Asgaonkar, Vaishnavi Rathod\",\"doi\":\"10.2174/0115680266343336241021080438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.</p><p><strong>Objective: </strong>This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.</p><p><strong>Method: </strong>The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.</p><p><strong>Result: </strong>Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.</p><p><strong>Conclusion: </strong>Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266343336241021080438\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266343336241021080438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

简介癌症是导致全球死亡的主要原因,因此迫切需要新的有效治疗方法。苯并咪唑和吡唑衍生物具有多种生物活性,因此作为抗癌剂的潜力备受关注。但它们也面临着一些挑战,如癌细胞产生抗药性、毒性问题以及不同类型癌症的疗效不一致等。为了克服这些挑战,有必要利用结构-活性关系对这些核素进行优化:本综述旨在研究各种苯并咪唑、吡唑及其混合衍生物作为抗癌剂的结构-活性关系(SAR)。对研究人员发表的药效最强和药效最弱的苯并咪唑、吡唑化合物及其混合衍生物的研究结果进行了汇编:方法:针对不同的靶点和细胞系,对不同研究人员在苯并咪唑和吡唑核方面的研究成果进行了回顾和分析。此外,还总结了吡唑、苯并咪唑及其杂化物不同位置上的取代情况,以得出优化的药效谱:根据我们对现有研究的分析,我们预计本综述将指导研究人员创造出有效的吡唑、苯并咪唑和混合衍生物,这对有效抗击癌症至关重要:结论:结构-活性关系(SAR)研究有助于开发针对癌症特定方面更强、选择性更高的吡唑-苯并咪唑混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Insight into the Structure-Activity Relationship of Benzimidazole and Pyrazole Derivatives as Anticancer Agents.

Introduction: Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.

Objective: This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.

Method: The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.

Result: Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.

Conclusion: Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信