Shital M Patil, Piyush Nikalje, Navnath Gavande, Kalyani D Asgaonkar, Vaishnavi Rathod
{"title":"苯并咪唑和吡唑衍生物作为抗癌剂的结构-活性关系透视。","authors":"Shital M Patil, Piyush Nikalje, Navnath Gavande, Kalyani D Asgaonkar, Vaishnavi Rathod","doi":"10.2174/0115680266343336241021080438","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.</p><p><strong>Objective: </strong>This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.</p><p><strong>Method: </strong>The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.</p><p><strong>Result: </strong>Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.</p><p><strong>Conclusion: </strong>Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Insight into the Structure-Activity Relationship of Benzimidazole and Pyrazole Derivatives as Anticancer Agents.\",\"authors\":\"Shital M Patil, Piyush Nikalje, Navnath Gavande, Kalyani D Asgaonkar, Vaishnavi Rathod\",\"doi\":\"10.2174/0115680266343336241021080438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.</p><p><strong>Objective: </strong>This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.</p><p><strong>Method: </strong>The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.</p><p><strong>Result: </strong>Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.</p><p><strong>Conclusion: </strong>Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266343336241021080438\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266343336241021080438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
An Insight into the Structure-Activity Relationship of Benzimidazole and Pyrazole Derivatives as Anticancer Agents.
Introduction: Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary.
Objective: This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled.
Method: The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore.
Result: Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively.
Conclusion: Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.