{"title":"通过生物信息学分析阐明黄芪对结直肠癌患者的作用机制","authors":"Shuwei Wang, Jiandong Tang, Gan Li, Songbing He","doi":"10.2174/0109298673344265241014114804","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Astragalus membranaceus has shown positive clinical efficacy in treating colorectal cancer (CRC).</p><p><strong>Objective: </strong>This study aimed to identify the key active components of Astragalus and determine effective targets of these components in CRC patients.</p><p><strong>Methods: </strong>We identified active components of Astragalus membranaceus and differentially expressed genes in traditional Chinese medicine systems pharmacology database and The Cancer Genome Atlas. Additionally, the enrichment analysis of differential target genes (DTGs) was performed using the R-package clusterProfiler. Immunocyte correlation analysis and non-coding regulatory network construction were performed for biomarkers using Spearman's method and NetworkAnalyst. Finally, molecular docking of biomarkers and their corresponding molecule drugs was done with Autodock Vina software.</p><p><strong>Results: </strong>We identified 20 active components of Astragalus membranaceus and 1 403 target genes through screening. A total of 2 300 differentially expressed genes, and 3 035 hub genes in CRC were screened. The integration of the target genes with the significantly differentially expressed genes and Hub genes identified resulted in a total of 86 DTGs. Subsequently, the results showed 828 enriched GO biological processes, 184 enriched GO molecular functions, 59 enriched GO cellular components, and 46 enriched KEGG pathways. We also obtained a total of 143 PPI pairs involving 67 nodes. Additionally, we constructed 45 mRNA-TF pairs, 101 miRNA-mRNA pairs, and 200 miRNA- mRNA-TF triplets. Finally, molecular docking was performed for the active component quercetin with F2 and UGT1A1 and formic acid with FGA, AHSG, and KNG1.</p><p><strong>Conclusion: </strong>This study identified the active components of Astragalus membranaceus and their corresponding targets in CRC. These findings provide robust evidence for precision drug therapy in patients with CRC.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Mechanisms of Astragalus Membranaceus in Colorectal Cancer Patients through Bioinformatics Analysis.\",\"authors\":\"Shuwei Wang, Jiandong Tang, Gan Li, Songbing He\",\"doi\":\"10.2174/0109298673344265241014114804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Astragalus membranaceus has shown positive clinical efficacy in treating colorectal cancer (CRC).</p><p><strong>Objective: </strong>This study aimed to identify the key active components of Astragalus and determine effective targets of these components in CRC patients.</p><p><strong>Methods: </strong>We identified active components of Astragalus membranaceus and differentially expressed genes in traditional Chinese medicine systems pharmacology database and The Cancer Genome Atlas. Additionally, the enrichment analysis of differential target genes (DTGs) was performed using the R-package clusterProfiler. Immunocyte correlation analysis and non-coding regulatory network construction were performed for biomarkers using Spearman's method and NetworkAnalyst. Finally, molecular docking of biomarkers and their corresponding molecule drugs was done with Autodock Vina software.</p><p><strong>Results: </strong>We identified 20 active components of Astragalus membranaceus and 1 403 target genes through screening. A total of 2 300 differentially expressed genes, and 3 035 hub genes in CRC were screened. The integration of the target genes with the significantly differentially expressed genes and Hub genes identified resulted in a total of 86 DTGs. Subsequently, the results showed 828 enriched GO biological processes, 184 enriched GO molecular functions, 59 enriched GO cellular components, and 46 enriched KEGG pathways. We also obtained a total of 143 PPI pairs involving 67 nodes. Additionally, we constructed 45 mRNA-TF pairs, 101 miRNA-mRNA pairs, and 200 miRNA- mRNA-TF triplets. Finally, molecular docking was performed for the active component quercetin with F2 and UGT1A1 and formic acid with FGA, AHSG, and KNG1.</p><p><strong>Conclusion: </strong>This study identified the active components of Astragalus membranaceus and their corresponding targets in CRC. These findings provide robust evidence for precision drug therapy in patients with CRC.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673344265241014114804\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673344265241014114804","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elucidating the Mechanisms of Astragalus Membranaceus in Colorectal Cancer Patients through Bioinformatics Analysis.
Background: Astragalus membranaceus has shown positive clinical efficacy in treating colorectal cancer (CRC).
Objective: This study aimed to identify the key active components of Astragalus and determine effective targets of these components in CRC patients.
Methods: We identified active components of Astragalus membranaceus and differentially expressed genes in traditional Chinese medicine systems pharmacology database and The Cancer Genome Atlas. Additionally, the enrichment analysis of differential target genes (DTGs) was performed using the R-package clusterProfiler. Immunocyte correlation analysis and non-coding regulatory network construction were performed for biomarkers using Spearman's method and NetworkAnalyst. Finally, molecular docking of biomarkers and their corresponding molecule drugs was done with Autodock Vina software.
Results: We identified 20 active components of Astragalus membranaceus and 1 403 target genes through screening. A total of 2 300 differentially expressed genes, and 3 035 hub genes in CRC were screened. The integration of the target genes with the significantly differentially expressed genes and Hub genes identified resulted in a total of 86 DTGs. Subsequently, the results showed 828 enriched GO biological processes, 184 enriched GO molecular functions, 59 enriched GO cellular components, and 46 enriched KEGG pathways. We also obtained a total of 143 PPI pairs involving 67 nodes. Additionally, we constructed 45 mRNA-TF pairs, 101 miRNA-mRNA pairs, and 200 miRNA- mRNA-TF triplets. Finally, molecular docking was performed for the active component quercetin with F2 and UGT1A1 and formic acid with FGA, AHSG, and KNG1.
Conclusion: This study identified the active components of Astragalus membranaceus and their corresponding targets in CRC. These findings provide robust evidence for precision drug therapy in patients with CRC.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.