暴露于脂多糖后大鼠肠道佩耶氏斑的肠细胞顶端和滤泡相关上皮细胞的组织屏障的变化

IF 0.9 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
A A Fedorova, O V Rybalchenko, L S Okorokova, V V Kapustina, O G Orlova, A G Markov
{"title":"暴露于脂多糖后大鼠肠道佩耶氏斑的肠细胞顶端和滤泡相关上皮细胞的组织屏障的变化","authors":"A A Fedorova, O V Rybalchenko, L S Okorokova, V V Kapustina, O G Orlova, A G Markov","doi":"10.1007/s10517-024-06263-0","DOIUrl":null,"url":null,"abstract":"<p><p>To study the para- and transcellular permeability of columnar epithelium and follicle-associated epithelium of Peyer's patches in the rat intestine, LPS was applied from the mucosal side to simulate the action of endotoxins from gram-negative bacteria of gut microbiota. LPS did not affect transepithelial resistance or sodium fluorescein permeability, but increased the levels of claudin-3 and claudin-4 in enterocytes, suggesting strengthening of the paracellular intestinal barrier. Transcellular permeability was evaluated by electron microscopy based on the number of vesicular structures in the cytoplasm of different cell types. LPS increased the number of small vesicles in follicle-associated epithelium of Peyers' patches. In columnar epithelial cells, LPS reduced the number of smaller vesicles and increased the number of larger ones. LPS did not damage the tissue barrier, but enhanced transcytosis, which could potentiate the effects of endotoxin on its receptors in the intestinal mucosa.</p>","PeriodicalId":9331,"journal":{"name":"Bulletin of Experimental Biology and Medicine","volume":" ","pages":"757-762"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the Tissue Barrier after Exposure to Lipopolysaccharide on the Apical Side of Enterocytes and the Follicle-Associated Epithelium in Peyer's Patches of the Rat Intestine.\",\"authors\":\"A A Fedorova, O V Rybalchenko, L S Okorokova, V V Kapustina, O G Orlova, A G Markov\",\"doi\":\"10.1007/s10517-024-06263-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study the para- and transcellular permeability of columnar epithelium and follicle-associated epithelium of Peyer's patches in the rat intestine, LPS was applied from the mucosal side to simulate the action of endotoxins from gram-negative bacteria of gut microbiota. LPS did not affect transepithelial resistance or sodium fluorescein permeability, but increased the levels of claudin-3 and claudin-4 in enterocytes, suggesting strengthening of the paracellular intestinal barrier. Transcellular permeability was evaluated by electron microscopy based on the number of vesicular structures in the cytoplasm of different cell types. LPS increased the number of small vesicles in follicle-associated epithelium of Peyers' patches. In columnar epithelial cells, LPS reduced the number of smaller vesicles and increased the number of larger ones. LPS did not damage the tissue barrier, but enhanced transcytosis, which could potentiate the effects of endotoxin on its receptors in the intestinal mucosa.</p>\",\"PeriodicalId\":9331,\"journal\":{\"name\":\"Bulletin of Experimental Biology and Medicine\",\"volume\":\" \",\"pages\":\"757-762\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10517-024-06263-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10517-024-06263-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为了研究大鼠肠道佩耶氏斑的柱状上皮和滤泡相关上皮的细胞旁通透性和跨细胞通透性,从粘膜侧施加 LPS 以模拟肠道微生物群革兰氏阴性菌内毒素的作用。LPS 不影响经上皮阻力或荧光素钠通透性,但增加了肠细胞中 claudin-3 和 claudin-4 的水平,表明细胞旁肠屏障得到了加强。根据不同类型细胞胞质中囊泡结构的数量,通过电子显微镜对跨细胞渗透性进行了评估。LPS 增加了佩尔氏斑的滤泡相关上皮细胞中的小囊泡数量。在柱状上皮细胞中,LPS 减少了小囊泡的数量,增加了大囊泡的数量。LPS 不会破坏组织屏障,但会增强转囊作用,从而增强内毒素对肠粘膜受体的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes in the Tissue Barrier after Exposure to Lipopolysaccharide on the Apical Side of Enterocytes and the Follicle-Associated Epithelium in Peyer's Patches of the Rat Intestine.

To study the para- and transcellular permeability of columnar epithelium and follicle-associated epithelium of Peyer's patches in the rat intestine, LPS was applied from the mucosal side to simulate the action of endotoxins from gram-negative bacteria of gut microbiota. LPS did not affect transepithelial resistance or sodium fluorescein permeability, but increased the levels of claudin-3 and claudin-4 in enterocytes, suggesting strengthening of the paracellular intestinal barrier. Transcellular permeability was evaluated by electron microscopy based on the number of vesicular structures in the cytoplasm of different cell types. LPS increased the number of small vesicles in follicle-associated epithelium of Peyers' patches. In columnar epithelial cells, LPS reduced the number of smaller vesicles and increased the number of larger ones. LPS did not damage the tissue barrier, but enhanced transcytosis, which could potentiate the effects of endotoxin on its receptors in the intestinal mucosa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Experimental Biology and Medicine
Bulletin of Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
1.50
自引率
14.30%
发文量
265
审稿时长
2 months
期刊介绍: Bulletin of Experimental Biology and Medicine presents original peer reviewed research papers and brief reports on priority new research results in physiology, biochemistry, biophysics, pharmacology, immunology, microbiology, genetics, oncology, etc. Novel trends in science are covered in new sections of the journal - Biogerontology and Human Ecology - that first appeared in 2005. World scientific interest in stem cells prompted inclusion into Bulletin of Experimental Biology and Medicine a quarterly scientific journal Cell Technologies in Biology and Medicine (a new Russian Academy of Medical Sciences publication since 2005). It publishes only original papers from the leading research institutions on molecular biology of stem and progenitor cells, stem cell as the basis of gene therapy, molecular language of cell-to-cell communication, cytokines, chemokines, growth and other factors, pilot projects on clinical use of stem and progenitor cells. The Russian Volume Year is published in English from April.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信