Ximena L Ruden, Aditi Singh, Teya Marben, Wen Tang, Awoniyi O Awonuga, Douglas M. Ruden, Elizabeth E Puscheck, Hao Feng, Steven J. Korzeniewski, Daniel A Rappolee
{"title":"胚胎干细胞受压过早失衡分化的单细胞转录组指纹图谱","authors":"Ximena L Ruden, Aditi Singh, Teya Marben, Wen Tang, Awoniyi O Awonuga, Douglas M. Ruden, Elizabeth E Puscheck, Hao Feng, Steven J. Korzeniewski, Daniel A Rappolee","doi":"10.1002/bdr2.2409","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Bulk and single cell (sc)RNAseq analyses of two cultured ESC lines was done, corroborated by qPCR. Transcriptomic responses were analyzed of cultured ESC stressed by Sorbitol, with Leukemia inhibitory factor (LIF + ; stemness growth factor), RA without LIF to control for XEN induction, and compared with normal differentiation (LIF − , ND).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Sorbitol and RA increase subpopulations of 2-cell embryo-like (2CEL) and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE) cells and suppress formative pluripotency, imbalancing alternate lineage choices of initial naïve pluripotent cultured ESC compared with ND. Although bulk RNAseq and gene ontology (GO) group analyses suggest that stress induces anterior VE-head organizer and placental markers, scRNAseq reveals relatively few cells. But VE and placental markers/cells were in adjacent stressed cell clusters in the UMAP, like recent, normal UMAP of conceptuses. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Hyperosmotic stress, and other toxicological stresses, like drugs with active ingredient RA, may cause premature, lineage imbalance, resulting in miscarriages or birth defects.</p>\n </section>\n </div>","PeriodicalId":9121,"journal":{"name":"Birth Defects Research","volume":"116 11","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Single Cell Transcriptomic Fingerprint of Stressed Premature, Imbalanced Differentiation of Embryonic Stem Cells\",\"authors\":\"Ximena L Ruden, Aditi Singh, Teya Marben, Wen Tang, Awoniyi O Awonuga, Douglas M. Ruden, Elizabeth E Puscheck, Hao Feng, Steven J. Korzeniewski, Daniel A Rappolee\",\"doi\":\"10.1002/bdr2.2409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Bulk and single cell (sc)RNAseq analyses of two cultured ESC lines was done, corroborated by qPCR. Transcriptomic responses were analyzed of cultured ESC stressed by Sorbitol, with Leukemia inhibitory factor (LIF + ; stemness growth factor), RA without LIF to control for XEN induction, and compared with normal differentiation (LIF − , ND).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Sorbitol and RA increase subpopulations of 2-cell embryo-like (2CEL) and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE) cells and suppress formative pluripotency, imbalancing alternate lineage choices of initial naïve pluripotent cultured ESC compared with ND. Although bulk RNAseq and gene ontology (GO) group analyses suggest that stress induces anterior VE-head organizer and placental markers, scRNAseq reveals relatively few cells. But VE and placental markers/cells were in adjacent stressed cell clusters in the UMAP, like recent, normal UMAP of conceptuses. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Hyperosmotic stress, and other toxicological stresses, like drugs with active ingredient RA, may cause premature, lineage imbalance, resulting in miscarriages or birth defects.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9121,\"journal\":{\"name\":\"Birth Defects Research\",\"volume\":\"116 11\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth Defects Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2409\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2409","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
A Single Cell Transcriptomic Fingerprint of Stressed Premature, Imbalanced Differentiation of Embryonic Stem Cells
Background
Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.
Methods
Bulk and single cell (sc)RNAseq analyses of two cultured ESC lines was done, corroborated by qPCR. Transcriptomic responses were analyzed of cultured ESC stressed by Sorbitol, with Leukemia inhibitory factor (LIF + ; stemness growth factor), RA without LIF to control for XEN induction, and compared with normal differentiation (LIF − , ND).
Results
Sorbitol and RA increase subpopulations of 2-cell embryo-like (2CEL) and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE) cells and suppress formative pluripotency, imbalancing alternate lineage choices of initial naïve pluripotent cultured ESC compared with ND. Although bulk RNAseq and gene ontology (GO) group analyses suggest that stress induces anterior VE-head organizer and placental markers, scRNAseq reveals relatively few cells. But VE and placental markers/cells were in adjacent stressed cell clusters in the UMAP, like recent, normal UMAP of conceptuses. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance.
Conclusions
Hyperosmotic stress, and other toxicological stresses, like drugs with active ingredient RA, may cause premature, lineage imbalance, resulting in miscarriages or birth defects.
期刊介绍:
The journal Birth Defects Research publishes original research and reviews in areas related to the etiology of adverse developmental and reproductive outcome. In particular the journal is devoted to the publication of original scientific research that contributes to the understanding of the biology of embryonic development and the prenatal causative factors and mechanisms leading to adverse pregnancy outcomes, namely structural and functional birth defects, pregnancy loss, postnatal functional defects in the human population, and to the identification of prenatal factors and biological mechanisms that reduce these risks.
Adverse reproductive and developmental outcomes may have genetic, environmental, nutritional or epigenetic causes. Accordingly, the journal Birth Defects Research takes an integrated, multidisciplinary approach in its organization and publication strategy. The journal Birth Defects Research contains separate sections for clinical and molecular teratology, developmental and reproductive toxicology, and reviews in developmental biology to acknowledge and accommodate the integrative nature of research in this field. Each section has a dedicated editor who is a leader in his/her field and who has full editorial authority in his/her area.