{"title":"机器学习模型揭示了 ARHGAP11A 对 NSCLC 淋巴结转移和干细胞的影响。","authors":"Xiaoli Wang, Yan Zhou, Xiaomin Lu, Lili Shao","doi":"10.1002/biof.2141","DOIUrl":null,"url":null,"abstract":"<p><p>Most patients with non-small cell lung cancer (NSCLC) are diagnosed at an advanced stage of the disease, which complicates treatment due to a heightened risk of metastasis. Consequently, the timely identification of biomarkers associated with lymph node metastasis is essential for improving the clinical management of NSCLC patients. In this research, the WGCNA algorithm was utilized to pinpoint genes linked to lymph node metastasis in NSCLC. A cluster analysis was carried out to investigate how these genes correlate with the prognosis and the outcomes of immunotherapy for NSCLC patients. Following this, diagnostic and prognostic models were created and validated through various machine learning methodologies. The random forest technique highlighted the importance of ARHGAP11A, leading to an in-depth examination of its role in NSCLC. By analyzing 78 tissue chip samples from NSCLC patients, the study confirmed the association between ARHGAP11A expression, patient prognosis, and lymph node metastasis. Finally, the influence of ARHGAP11A on NSCLC cells was assessed through cell function experiments. This research utilized the WGCNA technique to identify 25 genes that are related to lymph node metastasis, clarifying their connections with tumor invasion, growth, and the activation of stemness pathways. Cluster analysis revealed significant associations between these genes and lymph node metastasis in NSCLC, especially concerning immunotherapy and targeted treatments. A diagnostic system that combines various machine learning approaches demonstrated strong efficacy in forecasting both the diagnosis and prognosis of NSCLC. Importantly, ARHGAP11A was identified as a key prognostic gene associated with lymph node metastasis in NSCLC. Molecular docking analyses suggested that ARHGAP11A has a strong affinity for targeted therapies within NSCLC. Additionally, immunohistochemical assessments confirmed that higher levels of ARHGAP11A expression correlate with unfavorable outcomes for NSCLC patients. Experiments on cells showed that reducing ARHGAP11A expression can hinder the proliferation, metastasis, and stemness traits of NSCLC cells. This investigation reveals the novel insight that ARHGAP11A may function as a potential biomarker connected to lymph node metastasis in NSCLC. Moreover, reducing the expression of ARHGAP11A has demonstrated the ability to diminish tumor stemness characteristics, presenting a promising opportunity for improving treatment strategies for this condition.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning models reveal ARHGAP11A's impact on lymph node metastasis and stemness in NSCLC.\",\"authors\":\"Xiaoli Wang, Yan Zhou, Xiaomin Lu, Lili Shao\",\"doi\":\"10.1002/biof.2141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most patients with non-small cell lung cancer (NSCLC) are diagnosed at an advanced stage of the disease, which complicates treatment due to a heightened risk of metastasis. Consequently, the timely identification of biomarkers associated with lymph node metastasis is essential for improving the clinical management of NSCLC patients. In this research, the WGCNA algorithm was utilized to pinpoint genes linked to lymph node metastasis in NSCLC. A cluster analysis was carried out to investigate how these genes correlate with the prognosis and the outcomes of immunotherapy for NSCLC patients. Following this, diagnostic and prognostic models were created and validated through various machine learning methodologies. The random forest technique highlighted the importance of ARHGAP11A, leading to an in-depth examination of its role in NSCLC. By analyzing 78 tissue chip samples from NSCLC patients, the study confirmed the association between ARHGAP11A expression, patient prognosis, and lymph node metastasis. Finally, the influence of ARHGAP11A on NSCLC cells was assessed through cell function experiments. This research utilized the WGCNA technique to identify 25 genes that are related to lymph node metastasis, clarifying their connections with tumor invasion, growth, and the activation of stemness pathways. Cluster analysis revealed significant associations between these genes and lymph node metastasis in NSCLC, especially concerning immunotherapy and targeted treatments. A diagnostic system that combines various machine learning approaches demonstrated strong efficacy in forecasting both the diagnosis and prognosis of NSCLC. Importantly, ARHGAP11A was identified as a key prognostic gene associated with lymph node metastasis in NSCLC. Molecular docking analyses suggested that ARHGAP11A has a strong affinity for targeted therapies within NSCLC. Additionally, immunohistochemical assessments confirmed that higher levels of ARHGAP11A expression correlate with unfavorable outcomes for NSCLC patients. Experiments on cells showed that reducing ARHGAP11A expression can hinder the proliferation, metastasis, and stemness traits of NSCLC cells. This investigation reveals the novel insight that ARHGAP11A may function as a potential biomarker connected to lymph node metastasis in NSCLC. Moreover, reducing the expression of ARHGAP11A has demonstrated the ability to diminish tumor stemness characteristics, presenting a promising opportunity for improving treatment strategies for this condition.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/biof.2141\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2141","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Machine learning models reveal ARHGAP11A's impact on lymph node metastasis and stemness in NSCLC.
Most patients with non-small cell lung cancer (NSCLC) are diagnosed at an advanced stage of the disease, which complicates treatment due to a heightened risk of metastasis. Consequently, the timely identification of biomarkers associated with lymph node metastasis is essential for improving the clinical management of NSCLC patients. In this research, the WGCNA algorithm was utilized to pinpoint genes linked to lymph node metastasis in NSCLC. A cluster analysis was carried out to investigate how these genes correlate with the prognosis and the outcomes of immunotherapy for NSCLC patients. Following this, diagnostic and prognostic models were created and validated through various machine learning methodologies. The random forest technique highlighted the importance of ARHGAP11A, leading to an in-depth examination of its role in NSCLC. By analyzing 78 tissue chip samples from NSCLC patients, the study confirmed the association between ARHGAP11A expression, patient prognosis, and lymph node metastasis. Finally, the influence of ARHGAP11A on NSCLC cells was assessed through cell function experiments. This research utilized the WGCNA technique to identify 25 genes that are related to lymph node metastasis, clarifying their connections with tumor invasion, growth, and the activation of stemness pathways. Cluster analysis revealed significant associations between these genes and lymph node metastasis in NSCLC, especially concerning immunotherapy and targeted treatments. A diagnostic system that combines various machine learning approaches demonstrated strong efficacy in forecasting both the diagnosis and prognosis of NSCLC. Importantly, ARHGAP11A was identified as a key prognostic gene associated with lymph node metastasis in NSCLC. Molecular docking analyses suggested that ARHGAP11A has a strong affinity for targeted therapies within NSCLC. Additionally, immunohistochemical assessments confirmed that higher levels of ARHGAP11A expression correlate with unfavorable outcomes for NSCLC patients. Experiments on cells showed that reducing ARHGAP11A expression can hinder the proliferation, metastasis, and stemness traits of NSCLC cells. This investigation reveals the novel insight that ARHGAP11A may function as a potential biomarker connected to lymph node metastasis in NSCLC. Moreover, reducing the expression of ARHGAP11A has demonstrated the ability to diminish tumor stemness characteristics, presenting a promising opportunity for improving treatment strategies for this condition.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.