量子相变附近中间杂质态的高分辨率光谱。

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-11-13 Epub Date: 2024-11-01 DOI:10.1021/acs.nanolett.4c03376
Yao Zhang, Ruijing Sun, Tao Xie, Zhen-Yu Liu, Rui Wang, Wenhao Zhang, Chaofei Liu, Ying-Shuang Fu
{"title":"量子相变附近中间杂质态的高分辨率光谱。","authors":"Yao Zhang, Ruijing Sun, Tao Xie, Zhen-Yu Liu, Rui Wang, Wenhao Zhang, Chaofei Liu, Ying-Shuang Fu","doi":"10.1021/acs.nanolett.4c03376","DOIUrl":null,"url":null,"abstract":"<p><p>The intermediate behavior near a quantum phase transition is crucial for understanding the quantum criticality of various competing phases and their separate origins, yet it remains unexplored for the multiple Yu-Shiba-Rusinov (YSR) states. Here, we investigated the detailed spectroscopic change of the exchange-coupling-dependent YSR states near a quantum phase transition. The initially developed one pair of YSR states, induced by the Fe vacancy in monolayer Fe(Te,Se) superconductor, are clearly resolved with high resolution showing an evolution into two pairs of YSR peaks yet with dichotomy in their spectral features as they enter the quantum phase transition region. Spectral-weight analysis suggests that the double YSR pairs occur as a result of field splitting by the magnetic anisotropy. Our findings unveil the intermediate region of a quantum phase transition with a magnetic anisotropy-induced splitting of the YSR resonance, and highlight a prospect for developing functional electronics based on the flexibly controllable multiple quantum states.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Spectroscopy of the Intermediate Impurity States near a Quantum Phase Transition.\",\"authors\":\"Yao Zhang, Ruijing Sun, Tao Xie, Zhen-Yu Liu, Rui Wang, Wenhao Zhang, Chaofei Liu, Ying-Shuang Fu\",\"doi\":\"10.1021/acs.nanolett.4c03376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intermediate behavior near a quantum phase transition is crucial for understanding the quantum criticality of various competing phases and their separate origins, yet it remains unexplored for the multiple Yu-Shiba-Rusinov (YSR) states. Here, we investigated the detailed spectroscopic change of the exchange-coupling-dependent YSR states near a quantum phase transition. The initially developed one pair of YSR states, induced by the Fe vacancy in monolayer Fe(Te,Se) superconductor, are clearly resolved with high resolution showing an evolution into two pairs of YSR peaks yet with dichotomy in their spectral features as they enter the quantum phase transition region. Spectral-weight analysis suggests that the double YSR pairs occur as a result of field splitting by the magnetic anisotropy. Our findings unveil the intermediate region of a quantum phase transition with a magnetic anisotropy-induced splitting of the YSR resonance, and highlight a prospect for developing functional electronics based on the flexibly controllable multiple quantum states.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03376\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03376","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子相变附近的中间行为对于理解各种竞争相的量子临界性及其各自的起源至关重要,然而,对于多重 Yu-Shiba-Rusinov (YSR)态来说,这一点仍未得到探索。在这里,我们研究了量子相变附近依赖交换偶联的 YSR 态的详细光谱变化。由单层铁(Te,Se)超导体中的铁空位所诱导的一对 YSR 状态在进入量子相变区后,以高分辨率清晰地分辨出演化成两对 YSR 峰的光谱特征。光谱重量分析表明,双 YSR 对的出现是磁场各向异性分裂的结果。我们的研究结果揭示了磁各向异性诱导 YSR 共振分裂的量子相变中间区域,并凸显了基于灵活可控的多重量子态开发功能电子器件的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Resolution Spectroscopy of the Intermediate Impurity States near a Quantum Phase Transition.

High-Resolution Spectroscopy of the Intermediate Impurity States near a Quantum Phase Transition.

The intermediate behavior near a quantum phase transition is crucial for understanding the quantum criticality of various competing phases and their separate origins, yet it remains unexplored for the multiple Yu-Shiba-Rusinov (YSR) states. Here, we investigated the detailed spectroscopic change of the exchange-coupling-dependent YSR states near a quantum phase transition. The initially developed one pair of YSR states, induced by the Fe vacancy in monolayer Fe(Te,Se) superconductor, are clearly resolved with high resolution showing an evolution into two pairs of YSR peaks yet with dichotomy in their spectral features as they enter the quantum phase transition region. Spectral-weight analysis suggests that the double YSR pairs occur as a result of field splitting by the magnetic anisotropy. Our findings unveil the intermediate region of a quantum phase transition with a magnetic anisotropy-induced splitting of the YSR resonance, and highlight a prospect for developing functional electronics based on the flexibly controllable multiple quantum states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信