电子材料生成的可解释替代学习。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-10 Epub Date: 2024-11-01 DOI:10.1021/acsnano.4c12166
Zhilong Wang, Sixian Liu, Kehao Tao, An Chen, Hongxiao Duan, Yanqiang Han, Fengqi You, Gang Liu, Jinjin Li
{"title":"电子材料生成的可解释替代学习。","authors":"Zhilong Wang, Sixian Liu, Kehao Tao, An Chen, Hongxiao Duan, Yanqiang Han, Fengqi You, Gang Liu, Jinjin Li","doi":"10.1021/acsnano.4c12166","DOIUrl":null,"url":null,"abstract":"<p><p>Despite many accessible AI models that have been developed, it is an open challenge to fully exploit interpretable insights to enable effective materials design and develop materials with desired properties for target applications. Here, we introduce an interpretable surrogate learning framework that can actively design and generate electronic materials (EMGen), akin to producing updated materials with requirements by screening all possible elements and fractions. Taking the materials system with required band gaps as a case study, EMGen exhibits a benchmarking predictive error and a running time of 1.7 min for designing and producing a structure with a desired band gap. Using EMGen, we establish a large hybrid functional band gap database, and more uplifting is that the proposed EMGen effectively designs Ga<sub><i>x</i></sub>O<sub><i>y</i></sub> with a wide band gap (>5.0 eV) for deep ultraviolet (DUV) optoelectronic devices, enabling a breakthrough extension of the applicability of Ga<sub><i>x</i></sub>O<sub><i>y</i></sub> films in photodetectors to DUV light below 240 nm. The augmented band gap also helps improve the breakdown voltage and the heat resilience performance of the amorphous Ga<sub><i>x</i></sub>O<sub><i>y</i></sub> film, thereby achieving considerable potential within the realm of power electronics applications. The proposed EMGen, as a specialized, interpretable AI model for the generation of electronic materials, is demonstrated to be an essential tool for on-demand semiconductor materials design.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"33587-33601"},"PeriodicalIF":16.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Surrogate Learning for Electronic Material Generation.\",\"authors\":\"Zhilong Wang, Sixian Liu, Kehao Tao, An Chen, Hongxiao Duan, Yanqiang Han, Fengqi You, Gang Liu, Jinjin Li\",\"doi\":\"10.1021/acsnano.4c12166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite many accessible AI models that have been developed, it is an open challenge to fully exploit interpretable insights to enable effective materials design and develop materials with desired properties for target applications. Here, we introduce an interpretable surrogate learning framework that can actively design and generate electronic materials (EMGen), akin to producing updated materials with requirements by screening all possible elements and fractions. Taking the materials system with required band gaps as a case study, EMGen exhibits a benchmarking predictive error and a running time of 1.7 min for designing and producing a structure with a desired band gap. Using EMGen, we establish a large hybrid functional band gap database, and more uplifting is that the proposed EMGen effectively designs Ga<sub><i>x</i></sub>O<sub><i>y</i></sub> with a wide band gap (>5.0 eV) for deep ultraviolet (DUV) optoelectronic devices, enabling a breakthrough extension of the applicability of Ga<sub><i>x</i></sub>O<sub><i>y</i></sub> films in photodetectors to DUV light below 240 nm. The augmented band gap also helps improve the breakdown voltage and the heat resilience performance of the amorphous Ga<sub><i>x</i></sub>O<sub><i>y</i></sub> film, thereby achieving considerable potential within the realm of power electronics applications. The proposed EMGen, as a specialized, interpretable AI model for the generation of electronic materials, is demonstrated to be an essential tool for on-demand semiconductor materials design.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"33587-33601\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c12166\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12166","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管已经开发出了许多可用的人工智能模型,但如何充分利用可解释的洞察力来实现有效的材料设计,并开发出具有目标应用所需特性的材料,仍是一个公开的挑战。在此,我们介绍一种可解释的代用学习框架,它可以主动设计和生成电子材料(EMGen),类似于通过筛选所有可能的元素和分数来生产符合要求的最新材料。以具有所需带隙的材料系统为例,EMGen 在设计和生成具有所需带隙的结构时,显示出基准预测误差和 1.7 分钟的运行时间。利用 EMGen,我们建立了一个大型混合功能带隙数据库,更令人振奋的是,所提出的 EMGen 有效地为深紫外(DUV)光电器件设计了宽带隙(>5.0 eV)的 GaxOy,使 GaxOy 薄膜在光电探测器中的应用突破性地扩展到 240 纳米以下的 DUV 光。增强的带隙还有助于提高非晶 GaxOy 薄膜的击穿电压和耐热性能,从而在电力电子应用领域发挥巨大潜力。所提出的 EMGen 作为生成电子材料的专业化、可解释的人工智能模型,被证明是按需设计半导体材料的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interpretable Surrogate Learning for Electronic Material Generation.

Interpretable Surrogate Learning for Electronic Material Generation.

Despite many accessible AI models that have been developed, it is an open challenge to fully exploit interpretable insights to enable effective materials design and develop materials with desired properties for target applications. Here, we introduce an interpretable surrogate learning framework that can actively design and generate electronic materials (EMGen), akin to producing updated materials with requirements by screening all possible elements and fractions. Taking the materials system with required band gaps as a case study, EMGen exhibits a benchmarking predictive error and a running time of 1.7 min for designing and producing a structure with a desired band gap. Using EMGen, we establish a large hybrid functional band gap database, and more uplifting is that the proposed EMGen effectively designs GaxOy with a wide band gap (>5.0 eV) for deep ultraviolet (DUV) optoelectronic devices, enabling a breakthrough extension of the applicability of GaxOy films in photodetectors to DUV light below 240 nm. The augmented band gap also helps improve the breakdown voltage and the heat resilience performance of the amorphous GaxOy film, thereby achieving considerable potential within the realm of power electronics applications. The proposed EMGen, as a specialized, interpretable AI model for the generation of electronic materials, is demonstrated to be an essential tool for on-demand semiconductor materials design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信