Bo Zhang, Jiaxin Qie, Jiyuan You, Xiaotong Gao, Yuqian Li, Wenju Wang
{"title":"基于 NiS2/NiSe2 同源异质结构多面体的多功能复合分离器促进了高性能锂硫电池的多硫化物转化。","authors":"Bo Zhang, Jiaxin Qie, Jiyuan You, Xiaotong Gao, Yuqian Li, Wenju Wang","doi":"10.1021/acsami.4c13619","DOIUrl":null,"url":null,"abstract":"<p><p>The shuttle effect significantly hinders the industrialization of high-energy-density lithium-sulfur batteries. To address this issue, NiS<sub>2</sub>/NiSe<sub>2</sub> homologous heterostructure polyhedron (HHP) composite separators were developed to immobilize polysulfides and promote their swift conversion. An in-situ visualization symmetrical cell was specifically designed to show the rapid polysulfide adsorption capability of NiS<sub>2</sub>/NiSe<sub>2</sub> HHP, while the electrolyte-separator interfacial contact behavior was simulated to elucidate the mechanism of action of the composite separator in affecting the homogeneous nucleation of lithium metal surfaces. The electrochemical experimental result highlights the substantial enhancement in the reaction kinetics of polysulfides facilitated by NiS<sub>2</sub>/NiSe<sub>2</sub> HHP, owing to its high Li<sup>+</sup> diffusion coefficient and Li<sub>2</sub>S deposition capacity. The NiS<sub>2</sub>/NiSe<sub>2</sub> HHP cells demonstrate high initial specific capacity (1224.1 mAh g<sup>-1</sup>) at 0.2 C and minimal decay rates (0.073%) at 2 C. The NiS<sub>2</sub>/NiSe<sub>2</sub> HHP separator has high electrochemical catalytic activity with multiple adsorption sites, enabling the rapid polysulfide conversion and contributing to the preparation of high-performance lithium-sulfur batteries.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Composite Separator Based on NiS<sub>2</sub>/NiSe<sub>2</sub> Homologous Heterostructure Polyhedron Promotes Polysulfide Conversion for High Performance Lithium-Sulfur Batteries.\",\"authors\":\"Bo Zhang, Jiaxin Qie, Jiyuan You, Xiaotong Gao, Yuqian Li, Wenju Wang\",\"doi\":\"10.1021/acsami.4c13619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The shuttle effect significantly hinders the industrialization of high-energy-density lithium-sulfur batteries. To address this issue, NiS<sub>2</sub>/NiSe<sub>2</sub> homologous heterostructure polyhedron (HHP) composite separators were developed to immobilize polysulfides and promote their swift conversion. An in-situ visualization symmetrical cell was specifically designed to show the rapid polysulfide adsorption capability of NiS<sub>2</sub>/NiSe<sub>2</sub> HHP, while the electrolyte-separator interfacial contact behavior was simulated to elucidate the mechanism of action of the composite separator in affecting the homogeneous nucleation of lithium metal surfaces. The electrochemical experimental result highlights the substantial enhancement in the reaction kinetics of polysulfides facilitated by NiS<sub>2</sub>/NiSe<sub>2</sub> HHP, owing to its high Li<sup>+</sup> diffusion coefficient and Li<sub>2</sub>S deposition capacity. The NiS<sub>2</sub>/NiSe<sub>2</sub> HHP cells demonstrate high initial specific capacity (1224.1 mAh g<sup>-1</sup>) at 0.2 C and minimal decay rates (0.073%) at 2 C. The NiS<sub>2</sub>/NiSe<sub>2</sub> HHP separator has high electrochemical catalytic activity with multiple adsorption sites, enabling the rapid polysulfide conversion and contributing to the preparation of high-performance lithium-sulfur batteries.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13619\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13619","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
穿梭效应严重阻碍了高能量密度锂硫电池的产业化。为解决这一问题,我们开发了 NiS2/NiSe2 同源异质结构多面体(HHP)复合隔膜,用于固定多硫化物并促进其快速转化。为了展示 NiS2/NiSe2 HHP 对多硫化物的快速吸附能力,我们专门设计了一个原位可视化对称电池,同时模拟了电解质与分离器的界面接触行为,以阐明复合分离器影响锂金属表面均匀成核的作用机制。电化学实验结果表明,由于 NiS2/NiSe2 HHP 具有较高的 Li+ 扩散系数和 Li2S 沉积能力,因此它大大提高了多硫化物的反应动力学。NiS2/NiSe2 HHP 电池在 0.2 C 时显示出较高的初始比容量(1224.1 mAh g-1),在 2 C 时衰减率最小(0.073%)。NiS2/NiSe2 HHP 隔膜具有多个吸附位点,具有较高的电化学催化活性,可实现多硫化物的快速转化,有助于制备高性能锂硫电池。
Multifunctional Composite Separator Based on NiS2/NiSe2 Homologous Heterostructure Polyhedron Promotes Polysulfide Conversion for High Performance Lithium-Sulfur Batteries.
The shuttle effect significantly hinders the industrialization of high-energy-density lithium-sulfur batteries. To address this issue, NiS2/NiSe2 homologous heterostructure polyhedron (HHP) composite separators were developed to immobilize polysulfides and promote their swift conversion. An in-situ visualization symmetrical cell was specifically designed to show the rapid polysulfide adsorption capability of NiS2/NiSe2 HHP, while the electrolyte-separator interfacial contact behavior was simulated to elucidate the mechanism of action of the composite separator in affecting the homogeneous nucleation of lithium metal surfaces. The electrochemical experimental result highlights the substantial enhancement in the reaction kinetics of polysulfides facilitated by NiS2/NiSe2 HHP, owing to its high Li+ diffusion coefficient and Li2S deposition capacity. The NiS2/NiSe2 HHP cells demonstrate high initial specific capacity (1224.1 mAh g-1) at 0.2 C and minimal decay rates (0.073%) at 2 C. The NiS2/NiSe2 HHP separator has high electrochemical catalytic activity with multiple adsorption sites, enabling the rapid polysulfide conversion and contributing to the preparation of high-performance lithium-sulfur batteries.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture