减少非富勒烯有机太阳能电池中的非辐射能量损耗。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-11-01 DOI:10.1002/cssc.202402169
Nan Wei, Yawen Guo, Haoming Song, Yahui Liu, Hao Lu, Zhishan Bo
{"title":"减少非富勒烯有机太阳能电池中的非辐射能量损耗。","authors":"Nan Wei, Yawen Guo, Haoming Song, Yahui Liu, Hao Lu, Zhishan Bo","doi":"10.1002/cssc.202402169","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 20 % threshold, highlighting their considerable potential as next-generation energy conversion devices. In comparison to inorganic or perovskite solar cells, the open-circuit voltage (V<sub>oc</sub>) of OSCs is constrained by substantial non-radiative energy losses (ΔE<sub>nr</sub>), leading to values notably below those anticipated by the Shockley-Queisser limit. In OSCs, non-radiative energy losses are intimately associated with the electroluminescent quantum efficiency (EQE<sub>EL</sub>) of charge transfer states, which is in turn directly affected by the photoluminescence quantum yield (PLQY) of acceptor materials. Consequently, enhancing the PLQY of low-bandgap acceptor materials has emerged as a pivotal strategy to effectively mitigate ΔE<sub>nr</sub>. This review article delves into the intrinsic correlation between molecular structure and PLQY from the vantage point of acceptor material design. It further explores methodologies for designing acceptor materials exhibiting high PLQY, with the ultimate goal of realizing OSCs that combine high efficiency with minimal ΔE<sub>nr</sub>.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402169"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Non-Radiative Energy Losses in Non-Fullerene Organic Solar Cells.\",\"authors\":\"Nan Wei, Yawen Guo, Haoming Song, Yahui Liu, Hao Lu, Zhishan Bo\",\"doi\":\"10.1002/cssc.202402169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid advancement of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 20 % threshold, highlighting their considerable potential as next-generation energy conversion devices. In comparison to inorganic or perovskite solar cells, the open-circuit voltage (V<sub>oc</sub>) of OSCs is constrained by substantial non-radiative energy losses (ΔE<sub>nr</sub>), leading to values notably below those anticipated by the Shockley-Queisser limit. In OSCs, non-radiative energy losses are intimately associated with the electroluminescent quantum efficiency (EQE<sub>EL</sub>) of charge transfer states, which is in turn directly affected by the photoluminescence quantum yield (PLQY) of acceptor materials. Consequently, enhancing the PLQY of low-bandgap acceptor materials has emerged as a pivotal strategy to effectively mitigate ΔE<sub>nr</sub>. This review article delves into the intrinsic correlation between molecular structure and PLQY from the vantage point of acceptor material design. It further explores methodologies for designing acceptor materials exhibiting high PLQY, with the ultimate goal of realizing OSCs that combine high efficiency with minimal ΔE<sub>nr</sub>.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402169\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402169\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402169","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着非富勒烯受体(NFAs)的快速发展,有机太阳能电池(OSCs)的功率转换效率(PCE)已经超过了 20% 的临界值,凸显了其作为下一代能源转换设备的巨大潜力。与无机或过氧化物太阳能电池相比,有机太阳能电池的开路电压(Voc)受到大量非辐射能量损失(ΔEnr)的限制,导致其值明显低于肖克利-奎塞尔极限所预期的值。在 OSC 中,非辐射能量损失与电荷转移态的电致发光量子效率 (EQEEL) 密切相关,而 EQEEL 又直接受到受体材料的光致发光量子产率 (PLQY) 的影响。因此,提高低带隙受体材料的 PLQY 已成为有效降低 ΔEnr 的关键策略。 这篇综述文章从受体材料设计的角度深入探讨了分子结构与 PLQY 之间的内在联系。文章进一步探讨了设计具有高 PLQY 的受体材料的方法,最终目标是实现兼具高效率和最小 ΔEnr 的 OSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Non-Radiative Energy Losses in Non-Fullerene Organic Solar Cells.

With the rapid advancement of non-fullerene acceptors (NFAs), the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 20 % threshold, highlighting their considerable potential as next-generation energy conversion devices. In comparison to inorganic or perovskite solar cells, the open-circuit voltage (Voc) of OSCs is constrained by substantial non-radiative energy losses (ΔEnr), leading to values notably below those anticipated by the Shockley-Queisser limit. In OSCs, non-radiative energy losses are intimately associated with the electroluminescent quantum efficiency (EQEEL) of charge transfer states, which is in turn directly affected by the photoluminescence quantum yield (PLQY) of acceptor materials. Consequently, enhancing the PLQY of low-bandgap acceptor materials has emerged as a pivotal strategy to effectively mitigate ΔEnr. This review article delves into the intrinsic correlation between molecular structure and PLQY from the vantage point of acceptor material design. It further explores methodologies for designing acceptor materials exhibiting high PLQY, with the ultimate goal of realizing OSCs that combine high efficiency with minimal ΔEnr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信