单轴应力诱导磁矫顽力的强力增强

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bin Shen, Franziska Breitner, Philipp Gegenwart, Anton Jesche
{"title":"单轴应力诱导磁矫顽力的强力增强","authors":"Bin Shen, Franziska Breitner, Philipp Gegenwart, Anton Jesche","doi":"10.1103/physrevlett.133.186702","DOIUrl":null,"url":null,"abstract":"The performance of permanent magnets is intricately tied to their magnetic hysteresis loop. In this study, we investigate the heavy-fermion ferromagnet <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C e upper A g upper S b 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">e</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">A</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">g</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">S</mjx-c><mjx-c style=\"padding-top: 0.706em;\">b</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.27em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> through magnetization measurements under uniaxial stress. We observe a 2400% increase in magnetic coercivity with just a modest stress of approximately 1 kbar. This effect persists even after pressure release, attributable to stress-induced defects that efficiently pin domain walls. Other magnetic properties such as ordering temperature and saturation moment exhibit only weak pressure dependencies and display full reversibility. Our findings offer a promising route for increasing coercive field strength and enhancing the energy product in ferromagnetic materials and are potentially applicable to a broad spectrum of commercial or emerging magnetic applications.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"20 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Enhancement of Magnetic Coercivity Induced by Uniaxial Stress\",\"authors\":\"Bin Shen, Franziska Breitner, Philipp Gegenwart, Anton Jesche\",\"doi\":\"10.1103/physrevlett.133.186702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of permanent magnets is intricately tied to their magnetic hysteresis loop. In this study, we investigate the heavy-fermion ferromagnet <mjx-container ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-mrow><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"upper C e upper A g upper S b 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">C</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">e</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">A</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">g</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">S</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">b</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.27em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> through magnetization measurements under uniaxial stress. We observe a 2400% increase in magnetic coercivity with just a modest stress of approximately 1 kbar. This effect persists even after pressure release, attributable to stress-induced defects that efficiently pin domain walls. Other magnetic properties such as ordering temperature and saturation moment exhibit only weak pressure dependencies and display full reversibility. Our findings offer a promising route for increasing coercive field strength and enhancing the energy product in ferromagnetic materials and are potentially applicable to a broad spectrum of commercial or emerging magnetic applications.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.186702\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.186702","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

永磁体的性能与其磁滞回线密切相关。在本研究中,我们通过单轴应力下的磁化测量研究了重铁素体铁磁体 CeAgSb2。我们观察到,仅在大约 1 千巴的适度应力下,磁矫顽力就增加了 2400%。这种效应甚至在压力释放后仍然存在,这归因于应力诱发的缺陷,它能有效地钉住畴壁。有序温度和饱和矩等其他磁性能仅表现出微弱的压力依赖性,并显示出完全的可逆性。我们的发现为增加矫顽力场强度和提高铁磁材料的能量积提供了一条很有前景的途径,并有可能适用于广泛的商业或新兴磁性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Enhancement of Magnetic Coercivity Induced by Uniaxial Stress
The performance of permanent magnets is intricately tied to their magnetic hysteresis loop. In this study, we investigate the heavy-fermion ferromagnet CeAgSb2 through magnetization measurements under uniaxial stress. We observe a 2400% increase in magnetic coercivity with just a modest stress of approximately 1 kbar. This effect persists even after pressure release, attributable to stress-induced defects that efficiently pin domain walls. Other magnetic properties such as ordering temperature and saturation moment exhibit only weak pressure dependencies and display full reversibility. Our findings offer a promising route for increasing coercive field strength and enhancing the energy product in ferromagnetic materials and are potentially applicable to a broad spectrum of commercial or emerging magnetic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信