{"title":"𝒫𝒯对称量子力学","authors":"Carl M. Bender, Daniel W. Hook","doi":"10.1103/revmodphys.96.045002","DOIUrl":null,"url":null,"abstract":"It is generally assumed that a Hamiltonian for a physically acceptable quantum system (one that has a positive-definite spectrum and obeys the requirement of unitarity) must be Hermitian. However, a <mjx-container ctxtmenu_counter=\"246\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-font=\"script\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"script upper P upper T\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.703em;\">𝒫</mjx-c><mjx-c style=\"padding-top: 0.703em;\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric Hamiltonian can also define a physically acceptable quantum-mechanical system even if the Hamiltonian is not Hermitian. The study of <mjx-container ctxtmenu_counter=\"247\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-font=\"script\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"script upper P upper T\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.703em;\">𝒫</mjx-c><mjx-c style=\"padding-top: 0.703em;\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric quantum systems is a young and extremely active research area in both theoretical and experimental physics. The purpose of this review is to provide established scientists as well as graduate students with a compact, easy-to-read introduction to this field that will enable them to understand more advanced publications and to begin their own theoretical or experimental research activity. The ideas and techniques of <mjx-container ctxtmenu_counter=\"248\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-font=\"script\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"script upper P upper T\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.703em;\">𝒫</mjx-c><mjx-c style=\"padding-top: 0.703em;\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container> symmetry have been applied in the context of many different branches of physics. This review introduces the concepts of <mjx-container ctxtmenu_counter=\"249\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-font=\"script\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"script upper P upper T\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.703em;\">𝒫</mjx-c><mjx-c style=\"padding-top: 0.703em;\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container> symmetry by focusing on elementary one-dimensional <mjx-container ctxtmenu_counter=\"250\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-font=\"script\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"script upper P upper T\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.703em;\">𝒫</mjx-c><mjx-c style=\"padding-top: 0.703em;\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric quantum and classical mechanics and relies, in particular, on oscillator models to illustrate and explain the basic properties of <mjx-container ctxtmenu_counter=\"251\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-font=\"script\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"script upper P upper T\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.703em;\">𝒫</mjx-c><mjx-c style=\"padding-top: 0.703em;\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric quantum theory.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"67 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝒫𝒯-symmetric quantum mechanics\",\"authors\":\"Carl M. Bender, Daniel W. Hook\",\"doi\":\"10.1103/revmodphys.96.045002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is generally assumed that a Hamiltonian for a physically acceptable quantum system (one that has a positive-definite spectrum and obeys the requirement of unitarity) must be Hermitian. However, a <mjx-container ctxtmenu_counter=\\\"246\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-font=\\\"script\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"script upper P upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.703em;\\\">𝒫</mjx-c><mjx-c style=\\\"padding-top: 0.703em;\\\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric Hamiltonian can also define a physically acceptable quantum-mechanical system even if the Hamiltonian is not Hermitian. The study of <mjx-container ctxtmenu_counter=\\\"247\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-font=\\\"script\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"script upper P upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.703em;\\\">𝒫</mjx-c><mjx-c style=\\\"padding-top: 0.703em;\\\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric quantum systems is a young and extremely active research area in both theoretical and experimental physics. The purpose of this review is to provide established scientists as well as graduate students with a compact, easy-to-read introduction to this field that will enable them to understand more advanced publications and to begin their own theoretical or experimental research activity. The ideas and techniques of <mjx-container ctxtmenu_counter=\\\"248\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-font=\\\"script\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"script upper P upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.703em;\\\">𝒫</mjx-c><mjx-c style=\\\"padding-top: 0.703em;\\\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container> symmetry have been applied in the context of many different branches of physics. This review introduces the concepts of <mjx-container ctxtmenu_counter=\\\"249\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-font=\\\"script\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"script upper P upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.703em;\\\">𝒫</mjx-c><mjx-c style=\\\"padding-top: 0.703em;\\\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container> symmetry by focusing on elementary one-dimensional <mjx-container ctxtmenu_counter=\\\"250\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-font=\\\"script\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"script upper P upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.703em;\\\">𝒫</mjx-c><mjx-c style=\\\"padding-top: 0.703em;\\\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric quantum and classical mechanics and relies, in particular, on oscillator models to illustrate and explain the basic properties of <mjx-container ctxtmenu_counter=\\\"251\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-font=\\\"script\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"script upper P upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.703em;\\\">𝒫</mjx-c><mjx-c style=\\\"padding-top: 0.703em;\\\">𝒯</mjx-c></mjx-mi></mjx-math></mjx-container>-symmetric quantum theory.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/revmodphys.96.045002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.96.045002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
It is generally assumed that a Hamiltonian for a physically acceptable quantum system (one that has a positive-definite spectrum and obeys the requirement of unitarity) must be Hermitian. However, a 𝒫𝒯-symmetric Hamiltonian can also define a physically acceptable quantum-mechanical system even if the Hamiltonian is not Hermitian. The study of 𝒫𝒯-symmetric quantum systems is a young and extremely active research area in both theoretical and experimental physics. The purpose of this review is to provide established scientists as well as graduate students with a compact, easy-to-read introduction to this field that will enable them to understand more advanced publications and to begin their own theoretical or experimental research activity. The ideas and techniques of 𝒫𝒯 symmetry have been applied in the context of many different branches of physics. This review introduces the concepts of 𝒫𝒯 symmetry by focusing on elementary one-dimensional 𝒫𝒯-symmetric quantum and classical mechanics and relies, in particular, on oscillator models to illustrate and explain the basic properties of 𝒫𝒯-symmetric quantum theory.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.