光子捕获探测器

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Noriaki Horiuchi
{"title":"光子捕获探测器","authors":"Noriaki Horiuchi","doi":"10.1038/s41566-024-01560-6","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1135-1135"},"PeriodicalIF":32.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-trapping detector\",\"authors\":\"Noriaki Horiuchi\",\"doi\":\"10.1038/s41566-024-01560-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 11\",\"pages\":\"1135-1135\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01560-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01560-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

增强型光电探测器是在硅绝缘体衬底上制造的,衬底包括 3 微米的二氧化硅层和 1.5 微米的硅器件层。在此基础上,通过蒸发工艺沉积了一层 80 纳米的硒化铅薄膜。通过离子蚀刻形成了正方形晶格的孔阵列。孔的深度为 150 纳米。中国科学家制作了三个器件:一个不带孔阵列,两个带孔,直径(d)/晶格周期(p)值分别为 700/1,000 nm 和 700/2,333 nm。在顶层放置了两组独立的金金属指标,作为间隙电极,以便在硒化铅薄膜中产生电场。研究小组测量并比较了这三种器件在不同波长下的探测性能。研究人员发现,与基于有限差分时域法的数值模拟结果一致,光电探测器的峰值吸收波长随着晶格周期的增加而增加。当晶格周期为 1,000 nm、1,280 nm 和 1,520 nm 时,850 nm、1,064 nm、1,310 nm 和 1,550 nm 处的吸收率分别超过 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photon-trapping detector

Photon-trapping detector
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信