{"title":"具有更高性能的铁硅钴软磁合金的成分和微结构工程学","authors":"Qiming Chen, Kebing Wang, Lingfeng Wang, Jiaying Jin, Mi Yan, Chen Wu","doi":"10.1016/j.jmst.2024.08.069","DOIUrl":null,"url":null,"abstract":"The growing demand for high-efficiency and low-loss energy conversion and transportation techniques urges the development of advanced Fe–Si based soft magnet alloys. Simultaneous achievement of low coercivity (<em>H</em><sub>c</sub>) and large saturation magnetization (<em>M</em><sub>s</sub>) however, remains challenging. In this study, soft magnetic alloys with the composition Fe<sub>82–</sub><em><sub>x</sub></em>Si<sub>18</sub>Co<em><sub>x</sub></em> (<em>x</em> = 0 at.%, 4 at.%, 8 at.%, 12 at.%, 16 at.%, and 20 at.%) have been designed followed by microstructural tuning. The Co incorporation results in initially decreased <em>H</em><sub>c</sub> followed by increment due to reduced magnetocrystalline anisotropy and increased saturation magnetostriction from negative to positive values of the alloys. Meanwhile, the <em>M</em><sub>s</sub> raises with subsequent reduction, which origins from competitive mechanisms of increased average moment of Fe atoms and decreased average moment of Co atoms according to first principles calculations. Microstructural evolution during annealing of the Fe<sub>70</sub>Si<sub>18</sub>Co<sub>12</sub> with synergistically optimized <em>H</em><sub>c</sub> and <em>M</em><sub>s</sub> has been revealed that after elevated-temperature annealing, the DO<sub>3</sub> phase is predominately transformed from the B2 phase accompanied by an increase in the degree of ordering. The growth of the DO<sub>3</sub> phase deteriorates the <em>H</em><sub>c</sub> due to the aggravating pinning effect on the domain wall movement, which arises from the inhomogeneous magnetization distribution caused by increasing antiphase boundaries.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition and microstructure engineering of Fe–Si–Co soft magnetic alloys with enhanced performance\",\"authors\":\"Qiming Chen, Kebing Wang, Lingfeng Wang, Jiaying Jin, Mi Yan, Chen Wu\",\"doi\":\"10.1016/j.jmst.2024.08.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for high-efficiency and low-loss energy conversion and transportation techniques urges the development of advanced Fe–Si based soft magnet alloys. Simultaneous achievement of low coercivity (<em>H</em><sub>c</sub>) and large saturation magnetization (<em>M</em><sub>s</sub>) however, remains challenging. In this study, soft magnetic alloys with the composition Fe<sub>82–</sub><em><sub>x</sub></em>Si<sub>18</sub>Co<em><sub>x</sub></em> (<em>x</em> = 0 at.%, 4 at.%, 8 at.%, 12 at.%, 16 at.%, and 20 at.%) have been designed followed by microstructural tuning. The Co incorporation results in initially decreased <em>H</em><sub>c</sub> followed by increment due to reduced magnetocrystalline anisotropy and increased saturation magnetostriction from negative to positive values of the alloys. Meanwhile, the <em>M</em><sub>s</sub> raises with subsequent reduction, which origins from competitive mechanisms of increased average moment of Fe atoms and decreased average moment of Co atoms according to first principles calculations. Microstructural evolution during annealing of the Fe<sub>70</sub>Si<sub>18</sub>Co<sub>12</sub> with synergistically optimized <em>H</em><sub>c</sub> and <em>M</em><sub>s</sub> has been revealed that after elevated-temperature annealing, the DO<sub>3</sub> phase is predominately transformed from the B2 phase accompanied by an increase in the degree of ordering. The growth of the DO<sub>3</sub> phase deteriorates the <em>H</em><sub>c</sub> due to the aggravating pinning effect on the domain wall movement, which arises from the inhomogeneous magnetization distribution caused by increasing antiphase boundaries.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.069\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.069","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对高效率、低损耗的能源转换和运输技术的需求日益增长,促使人们开发先进的铁硅基软磁合金。然而,同时实现低矫顽力(Hc)和大饱和磁化率(Ms)仍然具有挑战性。本研究设计了成分为 Fe82-xSi18Cox(x = 0 at.%、4 at.%、8 at.%、12 at.%、16 at.% 和 20 at.%)的软磁合金,并进行了微观结构调整。由于磁晶各向异性降低,合金的饱和磁致伸缩从负值变为正值,钴的加入导致 Hc 最初降低,随后升高。同时,Ms 随之降低而升高,根据第一性原理计算,这是由于铁原子的平均矩增加和钴原子的平均矩降低的竞争机制造成的。协同优化 Hc 和 Ms 的 Fe70Si18Co12 在退火过程中的微观结构演变表明,在高温退火后,DO3 相主要从 B2 相转变而来,同时有序化程度增加。DO3 相的增长会恶化 Hc,这是由于反相边界的增加导致磁化分布不均匀,从而加剧了对畴壁运动的钉扎效应。
Composition and microstructure engineering of Fe–Si–Co soft magnetic alloys with enhanced performance
The growing demand for high-efficiency and low-loss energy conversion and transportation techniques urges the development of advanced Fe–Si based soft magnet alloys. Simultaneous achievement of low coercivity (Hc) and large saturation magnetization (Ms) however, remains challenging. In this study, soft magnetic alloys with the composition Fe82–xSi18Cox (x = 0 at.%, 4 at.%, 8 at.%, 12 at.%, 16 at.%, and 20 at.%) have been designed followed by microstructural tuning. The Co incorporation results in initially decreased Hc followed by increment due to reduced magnetocrystalline anisotropy and increased saturation magnetostriction from negative to positive values of the alloys. Meanwhile, the Ms raises with subsequent reduction, which origins from competitive mechanisms of increased average moment of Fe atoms and decreased average moment of Co atoms according to first principles calculations. Microstructural evolution during annealing of the Fe70Si18Co12 with synergistically optimized Hc and Ms has been revealed that after elevated-temperature annealing, the DO3 phase is predominately transformed from the B2 phase accompanied by an increase in the degree of ordering. The growth of the DO3 phase deteriorates the Hc due to the aggravating pinning effect on the domain wall movement, which arises from the inhomogeneous magnetization distribution caused by increasing antiphase boundaries.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.