{"title":"木质泥炭与膨润土的协同作用可通过增强土壤团聚能力和水文物理特性来改变粗粒土壤中土壤有机碳的稳定性","authors":"Xi Wang, Jun Fan, Huan Wang, Mengge Du","doi":"10.1002/ldr.5363","DOIUrl":null,"url":null,"abstract":"Coarse soil has a poor structure and is susceptible to wind and water erosion, thereby making it difficult to maintain the soil organic carbon (SOC) content. Woody peat (WP) is an organic material that can increase the SOC content of the soil, while clay materials can rapidly enhance the capacity for soil aggregate formation. In order to explore the synergistic effects of WP and clay materials (bentonite and red clay) on the aggregate structure and hydro‐physical properties of coarse soil, as well as the mechanism associated with SOC mineralization (ΔSOC), we conducted an incubation study using lou soil (L0) and loessial soil (H0) with three treatments: addition of WP alone (LW, HW), mixture of WP and bentonite (LWB, HWB), and mixture of WP and red clay (LWR, HWR). The three treatments enhanced the proportion of macroaggregate (> 2 mm) and aggregate stability of the two soils, and optimized the water retention and ventilation performance. The highest aggregate stability of LWB and HWB can be attributed to the positive synergistic effect of WP and bentonite, and bentonite was more effective than red clay due to its crystal structure. The results also showed that the ΔSOC values were significantly lower under LWB and HWB than those under WP addition alone and adding the mixture of WP and red clay (<jats:italic>p</jats:italic> < 0.05). Moreover, partial least squares path modeling analysis showed that the hydro‐physical properties of the two improved soils inhibited SOC mineralization (<jats:italic>p</jats:italic> > 0.05), whereas particulate organic carbon (POC) content significantly accelerated SOC mineralization (<jats:italic>p</jats:italic> < 0.01). The synergistic effect of clay materials increased mineral‐associated organic carbon (MAOC), which was beneficial to maintain the long‐term effectiveness of WP. Overall, our results demonstrated that the synergistic use of WP and bentonite enhanced the aggregate stability and hydro‐physical properties of coarse soil and improved SOC storage capacity. These results provide scientific and theoretical guidance to facilitate the rapid improvement of coarse soil through engineering measures in arid and semi‐arid areas with water and fertilizer limitations.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"61 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergy Between Woody Peat and Bentonite Alters Stability of Soil Organic Carbon in Coarse Soil by Enhancing Capacity for Soil Aggregation and Hydro‐Physical Properties\",\"authors\":\"Xi Wang, Jun Fan, Huan Wang, Mengge Du\",\"doi\":\"10.1002/ldr.5363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coarse soil has a poor structure and is susceptible to wind and water erosion, thereby making it difficult to maintain the soil organic carbon (SOC) content. Woody peat (WP) is an organic material that can increase the SOC content of the soil, while clay materials can rapidly enhance the capacity for soil aggregate formation. In order to explore the synergistic effects of WP and clay materials (bentonite and red clay) on the aggregate structure and hydro‐physical properties of coarse soil, as well as the mechanism associated with SOC mineralization (ΔSOC), we conducted an incubation study using lou soil (L0) and loessial soil (H0) with three treatments: addition of WP alone (LW, HW), mixture of WP and bentonite (LWB, HWB), and mixture of WP and red clay (LWR, HWR). The three treatments enhanced the proportion of macroaggregate (> 2 mm) and aggregate stability of the two soils, and optimized the water retention and ventilation performance. The highest aggregate stability of LWB and HWB can be attributed to the positive synergistic effect of WP and bentonite, and bentonite was more effective than red clay due to its crystal structure. The results also showed that the ΔSOC values were significantly lower under LWB and HWB than those under WP addition alone and adding the mixture of WP and red clay (<jats:italic>p</jats:italic> < 0.05). Moreover, partial least squares path modeling analysis showed that the hydro‐physical properties of the two improved soils inhibited SOC mineralization (<jats:italic>p</jats:italic> > 0.05), whereas particulate organic carbon (POC) content significantly accelerated SOC mineralization (<jats:italic>p</jats:italic> < 0.01). The synergistic effect of clay materials increased mineral‐associated organic carbon (MAOC), which was beneficial to maintain the long‐term effectiveness of WP. Overall, our results demonstrated that the synergistic use of WP and bentonite enhanced the aggregate stability and hydro‐physical properties of coarse soil and improved SOC storage capacity. These results provide scientific and theoretical guidance to facilitate the rapid improvement of coarse soil through engineering measures in arid and semi‐arid areas with water and fertilizer limitations.\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ldr.5363\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5363","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Synergy Between Woody Peat and Bentonite Alters Stability of Soil Organic Carbon in Coarse Soil by Enhancing Capacity for Soil Aggregation and Hydro‐Physical Properties
Coarse soil has a poor structure and is susceptible to wind and water erosion, thereby making it difficult to maintain the soil organic carbon (SOC) content. Woody peat (WP) is an organic material that can increase the SOC content of the soil, while clay materials can rapidly enhance the capacity for soil aggregate formation. In order to explore the synergistic effects of WP and clay materials (bentonite and red clay) on the aggregate structure and hydro‐physical properties of coarse soil, as well as the mechanism associated with SOC mineralization (ΔSOC), we conducted an incubation study using lou soil (L0) and loessial soil (H0) with three treatments: addition of WP alone (LW, HW), mixture of WP and bentonite (LWB, HWB), and mixture of WP and red clay (LWR, HWR). The three treatments enhanced the proportion of macroaggregate (> 2 mm) and aggregate stability of the two soils, and optimized the water retention and ventilation performance. The highest aggregate stability of LWB and HWB can be attributed to the positive synergistic effect of WP and bentonite, and bentonite was more effective than red clay due to its crystal structure. The results also showed that the ΔSOC values were significantly lower under LWB and HWB than those under WP addition alone and adding the mixture of WP and red clay (p < 0.05). Moreover, partial least squares path modeling analysis showed that the hydro‐physical properties of the two improved soils inhibited SOC mineralization (p > 0.05), whereas particulate organic carbon (POC) content significantly accelerated SOC mineralization (p < 0.01). The synergistic effect of clay materials increased mineral‐associated organic carbon (MAOC), which was beneficial to maintain the long‐term effectiveness of WP. Overall, our results demonstrated that the synergistic use of WP and bentonite enhanced the aggregate stability and hydro‐physical properties of coarse soil and improved SOC storage capacity. These results provide scientific and theoretical guidance to facilitate the rapid improvement of coarse soil through engineering measures in arid and semi‐arid areas with water and fertilizer limitations.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.