{"title":"微生物碳利用效率和周转率的提高推动了青藏高原东南部古老森林的土壤有机碳储存","authors":"Shenglan Ma, Wanze Zhu, Wenwu Wang, Xia Li, Zheliang Sheng, Wolfgang Wanek","doi":"10.1007/s00374-024-01877-y","DOIUrl":null,"url":null,"abstract":"<p>It is widely accepted that old-aged forest can accumulate soil organic carbon (SOC). How microbial physiological traits respond to forest age and whether they drive SOC sequestration in old-aged forest remain elusive. Therefore, we compared the microbial C use efficiency (CUE), biomass turnover rate (rB), microbial biomass C (MBC) and necromass C (MNC) across soil profiles from middle and old-aged forest and evaluated how these microbial traits are related to SOC storage. The results revealed that both forests could accumulate SOC and old-aged forest supported higher SOC storage than middle-aged forest from 2005 to 2020. Moreover, SOC was concentrated on the surface soils of middle-aged forest, whereas it was more distributed across the deeper soil profile in old-aged forest. Compared with middle-aged forest, the O, A and B soil layers of old-aged forest presented increases in microbial CUE (17.8%, 36.9% and 25.0%, respectively), rB (43.7%, 39.7% and 10.8%, respectively), MBC (114.8%, 81.1% and 122.9%, respectively), and MNC content (47.0%, 22.2% and 21.6%, respectively). Random forest analysis suggested that SOC accumulation is controlled mainly by microbial physiological traits rather than other factors including environmental variables. Specifically, microbial CUE and turnover rates increased in old-aged forest, resulting in higher MBC and MNC contents, which in turn led to SOC accumulation. Moreover, the effects of plant and soil properties on SOC storage are regulated mainly by microbial-physiological parameters and the size of microbial C pools. Our findings provide valuable insights into the microbial mechanisms underlying SOC storage in old-aged forest.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau\",\"authors\":\"Shenglan Ma, Wanze Zhu, Wenwu Wang, Xia Li, Zheliang Sheng, Wolfgang Wanek\",\"doi\":\"10.1007/s00374-024-01877-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is widely accepted that old-aged forest can accumulate soil organic carbon (SOC). How microbial physiological traits respond to forest age and whether they drive SOC sequestration in old-aged forest remain elusive. Therefore, we compared the microbial C use efficiency (CUE), biomass turnover rate (rB), microbial biomass C (MBC) and necromass C (MNC) across soil profiles from middle and old-aged forest and evaluated how these microbial traits are related to SOC storage. The results revealed that both forests could accumulate SOC and old-aged forest supported higher SOC storage than middle-aged forest from 2005 to 2020. Moreover, SOC was concentrated on the surface soils of middle-aged forest, whereas it was more distributed across the deeper soil profile in old-aged forest. Compared with middle-aged forest, the O, A and B soil layers of old-aged forest presented increases in microbial CUE (17.8%, 36.9% and 25.0%, respectively), rB (43.7%, 39.7% and 10.8%, respectively), MBC (114.8%, 81.1% and 122.9%, respectively), and MNC content (47.0%, 22.2% and 21.6%, respectively). Random forest analysis suggested that SOC accumulation is controlled mainly by microbial physiological traits rather than other factors including environmental variables. Specifically, microbial CUE and turnover rates increased in old-aged forest, resulting in higher MBC and MNC contents, which in turn led to SOC accumulation. Moreover, the effects of plant and soil properties on SOC storage are regulated mainly by microbial-physiological parameters and the size of microbial C pools. Our findings provide valuable insights into the microbial mechanisms underlying SOC storage in old-aged forest.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01877-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01877-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau
It is widely accepted that old-aged forest can accumulate soil organic carbon (SOC). How microbial physiological traits respond to forest age and whether they drive SOC sequestration in old-aged forest remain elusive. Therefore, we compared the microbial C use efficiency (CUE), biomass turnover rate (rB), microbial biomass C (MBC) and necromass C (MNC) across soil profiles from middle and old-aged forest and evaluated how these microbial traits are related to SOC storage. The results revealed that both forests could accumulate SOC and old-aged forest supported higher SOC storage than middle-aged forest from 2005 to 2020. Moreover, SOC was concentrated on the surface soils of middle-aged forest, whereas it was more distributed across the deeper soil profile in old-aged forest. Compared with middle-aged forest, the O, A and B soil layers of old-aged forest presented increases in microbial CUE (17.8%, 36.9% and 25.0%, respectively), rB (43.7%, 39.7% and 10.8%, respectively), MBC (114.8%, 81.1% and 122.9%, respectively), and MNC content (47.0%, 22.2% and 21.6%, respectively). Random forest analysis suggested that SOC accumulation is controlled mainly by microbial physiological traits rather than other factors including environmental variables. Specifically, microbial CUE and turnover rates increased in old-aged forest, resulting in higher MBC and MNC contents, which in turn led to SOC accumulation. Moreover, the effects of plant and soil properties on SOC storage are regulated mainly by microbial-physiological parameters and the size of microbial C pools. Our findings provide valuable insights into the microbial mechanisms underlying SOC storage in old-aged forest.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.