Haitao Li, Yingying Zhang, Han Dai, Veronica Pereir, Junfeng Zhao and Hiang Kwee Lee
{"title":"通过水诱导极化和微纳米复合策略提高基于 PVDF 的压电催化效率","authors":"Haitao Li, Yingying Zhang, Han Dai, Veronica Pereir, Junfeng Zhao and Hiang Kwee Lee","doi":"10.1039/D4NR03221G","DOIUrl":null,"url":null,"abstract":"<p >Polyvinylidene fluoride (PVDF)-based piezoelectric catalysts show promise in mechanical force-driven catalysis due to their good biocompatibility, flexibility, and ease of fabrication. However, the catalytic activity of pristine PVDF is limited due to its low piezoelectric phase content (<20%), poor orientation, and low surface carrier concentration. Here, we introduce an efficient PVDF-based composite nano-catalyst (rGO/PVDF) with high piezoelectric catalytic performance. We achieve this by employing a composite strategy that combines nanoscale water-induced polarization with polar functional group-modified graphene (rGO) serving as a nanoelectrode. The nanoscale water polarization effect, together with the two-dimensional planar structure of PVDF and the modified graphene's polar functional groups, effectively induces orientation in the PVDF piezoelectric phase to increase the functional β phase content. As a result, the β phase content and crystallinity of rGO/PVDF reach 95% and 40%, respectively, which are 600% and 170% higher compared to those of pristine PVDF. This enhancement plays a crucial role in endowing the material with strong force-to-electricity conversion characteristics. Additionally, the surface-modified rGO also boosts PVDF's surface carrier concentration and provides active sites for catalysis on the rGO/PVDF composite. Notably, under optimized conditions, our catalyst achieves a ∼99.1% degradation rate of organic pollutants (10 mg L<small><sup>−1</sup></small>) after 12 minutes of sonication at 240 W and maintains a high efficiency of ∼93.7% even at a 10 times higher pollutant concentration (100 mg L<small><sup>−1</sup></small>). Our piezoelectric catalyst also demonstrates efficient H<small><sub>2</sub></small>O<small><sub>2</sub></small> production at 95.8 mmol g<small><sub>rGO</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which is ∼9-fold and ∼134-fold higher than those of untreated PVDF and previously reported PVDF-based piezoelectric catalysts, respectively. This work paves the way for the development of highly efficient PVDF-based piezoelectric catalysts, thereby offering valuable insights for the advancement of mechanically driven catalysis in the environmental, energy, and chemical sectors.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 47","pages":" 21794-21803"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the efficiency of PVDF-based piezoelectric catalysis through water-induced polarization and a micro-nano-composite strategy†\",\"authors\":\"Haitao Li, Yingying Zhang, Han Dai, Veronica Pereir, Junfeng Zhao and Hiang Kwee Lee\",\"doi\":\"10.1039/D4NR03221G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyvinylidene fluoride (PVDF)-based piezoelectric catalysts show promise in mechanical force-driven catalysis due to their good biocompatibility, flexibility, and ease of fabrication. However, the catalytic activity of pristine PVDF is limited due to its low piezoelectric phase content (<20%), poor orientation, and low surface carrier concentration. Here, we introduce an efficient PVDF-based composite nano-catalyst (rGO/PVDF) with high piezoelectric catalytic performance. We achieve this by employing a composite strategy that combines nanoscale water-induced polarization with polar functional group-modified graphene (rGO) serving as a nanoelectrode. The nanoscale water polarization effect, together with the two-dimensional planar structure of PVDF and the modified graphene's polar functional groups, effectively induces orientation in the PVDF piezoelectric phase to increase the functional β phase content. As a result, the β phase content and crystallinity of rGO/PVDF reach 95% and 40%, respectively, which are 600% and 170% higher compared to those of pristine PVDF. This enhancement plays a crucial role in endowing the material with strong force-to-electricity conversion characteristics. Additionally, the surface-modified rGO also boosts PVDF's surface carrier concentration and provides active sites for catalysis on the rGO/PVDF composite. Notably, under optimized conditions, our catalyst achieves a ∼99.1% degradation rate of organic pollutants (10 mg L<small><sup>−1</sup></small>) after 12 minutes of sonication at 240 W and maintains a high efficiency of ∼93.7% even at a 10 times higher pollutant concentration (100 mg L<small><sup>−1</sup></small>). Our piezoelectric catalyst also demonstrates efficient H<small><sub>2</sub></small>O<small><sub>2</sub></small> production at 95.8 mmol g<small><sub>rGO</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which is ∼9-fold and ∼134-fold higher than those of untreated PVDF and previously reported PVDF-based piezoelectric catalysts, respectively. This work paves the way for the development of highly efficient PVDF-based piezoelectric catalysts, thereby offering valuable insights for the advancement of mechanically driven catalysis in the environmental, energy, and chemical sectors.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 47\",\"pages\":\" 21794-21803\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr03221g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr03221g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the efficiency of PVDF-based piezoelectric catalysis through water-induced polarization and a micro-nano-composite strategy†
Polyvinylidene fluoride (PVDF)-based piezoelectric catalysts show promise in mechanical force-driven catalysis due to their good biocompatibility, flexibility, and ease of fabrication. However, the catalytic activity of pristine PVDF is limited due to its low piezoelectric phase content (<20%), poor orientation, and low surface carrier concentration. Here, we introduce an efficient PVDF-based composite nano-catalyst (rGO/PVDF) with high piezoelectric catalytic performance. We achieve this by employing a composite strategy that combines nanoscale water-induced polarization with polar functional group-modified graphene (rGO) serving as a nanoelectrode. The nanoscale water polarization effect, together with the two-dimensional planar structure of PVDF and the modified graphene's polar functional groups, effectively induces orientation in the PVDF piezoelectric phase to increase the functional β phase content. As a result, the β phase content and crystallinity of rGO/PVDF reach 95% and 40%, respectively, which are 600% and 170% higher compared to those of pristine PVDF. This enhancement plays a crucial role in endowing the material with strong force-to-electricity conversion characteristics. Additionally, the surface-modified rGO also boosts PVDF's surface carrier concentration and provides active sites for catalysis on the rGO/PVDF composite. Notably, under optimized conditions, our catalyst achieves a ∼99.1% degradation rate of organic pollutants (10 mg L−1) after 12 minutes of sonication at 240 W and maintains a high efficiency of ∼93.7% even at a 10 times higher pollutant concentration (100 mg L−1). Our piezoelectric catalyst also demonstrates efficient H2O2 production at 95.8 mmol grGO−1 h−1, which is ∼9-fold and ∼134-fold higher than those of untreated PVDF and previously reported PVDF-based piezoelectric catalysts, respectively. This work paves the way for the development of highly efficient PVDF-based piezoelectric catalysts, thereby offering valuable insights for the advancement of mechanically driven catalysis in the environmental, energy, and chemical sectors.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.