{"title":"利用等离子波导分离和激发光子晶体奇数和偶数模式的混合模式分离器","authors":"Ehsan Beiranvand, Mohammad Danaie, Majid Afsahi","doi":"10.1016/j.photonics.2024.101323","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a mode splitter through a novel coupling mechanism between photonic crystal waveguides and metal-insulator-metal plasmonic waveguides. Notably, the proposed structure demonstrates the capability to excite both odd and even modes within the photonic crystal waveguide. Numerical simulations of this structure were conducted using the finite difference time domain (FDTD) method. Our numerical analysis reveals an exceptional transmittance of 95 % at the waveguide intersection for the wavelength of 1550 nm. The successful coupling of plasmonic waveguides to photonic crystal waveguides unveils a vast array of opportunities for designing innovative devices that harness the synergistic potential arising from the distinctive characteristics of surface plasmons and photonic crystals. An inherent advantage of this design lies in its simple topology, enabling cost-effective and precise manufacturing processes. This device offers the ability to accurately separate and identify output modes. Additionally, we utilize this coupler in the design of a highly efficient power divider that not only achieves high transmittance but also provides adjustable control over the output power level.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101323"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid mode splitter for separation and excitation of photonic crystal odd and even modes using plasmonic waveguides\",\"authors\":\"Ehsan Beiranvand, Mohammad Danaie, Majid Afsahi\",\"doi\":\"10.1016/j.photonics.2024.101323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a mode splitter through a novel coupling mechanism between photonic crystal waveguides and metal-insulator-metal plasmonic waveguides. Notably, the proposed structure demonstrates the capability to excite both odd and even modes within the photonic crystal waveguide. Numerical simulations of this structure were conducted using the finite difference time domain (FDTD) method. Our numerical analysis reveals an exceptional transmittance of 95 % at the waveguide intersection for the wavelength of 1550 nm. The successful coupling of plasmonic waveguides to photonic crystal waveguides unveils a vast array of opportunities for designing innovative devices that harness the synergistic potential arising from the distinctive characteristics of surface plasmons and photonic crystals. An inherent advantage of this design lies in its simple topology, enabling cost-effective and precise manufacturing processes. This device offers the ability to accurately separate and identify output modes. Additionally, we utilize this coupler in the design of a highly efficient power divider that not only achieves high transmittance but also provides adjustable control over the output power level.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"62 \",\"pages\":\"Article 101323\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000981\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000981","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A hybrid mode splitter for separation and excitation of photonic crystal odd and even modes using plasmonic waveguides
This study introduces a mode splitter through a novel coupling mechanism between photonic crystal waveguides and metal-insulator-metal plasmonic waveguides. Notably, the proposed structure demonstrates the capability to excite both odd and even modes within the photonic crystal waveguide. Numerical simulations of this structure were conducted using the finite difference time domain (FDTD) method. Our numerical analysis reveals an exceptional transmittance of 95 % at the waveguide intersection for the wavelength of 1550 nm. The successful coupling of plasmonic waveguides to photonic crystal waveguides unveils a vast array of opportunities for designing innovative devices that harness the synergistic potential arising from the distinctive characteristics of surface plasmons and photonic crystals. An inherent advantage of this design lies in its simple topology, enabling cost-effective and precise manufacturing processes. This device offers the ability to accurately separate and identify output modes. Additionally, we utilize this coupler in the design of a highly efficient power divider that not only achieves high transmittance but also provides adjustable control over the output power level.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.