关于变分法框架内随机偏微分方程不变流形的说明

Pub Date : 2024-10-11 DOI:10.1016/j.spl.2024.110282
Rajeev Bhaskaran, Stefan Tappe
{"title":"关于变分法框架内随机偏微分方程不变流形的说明","authors":"Rajeev Bhaskaran,&nbsp;Stefan Tappe","doi":"10.1016/j.spl.2024.110282","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we provide conditions for local invariance of finite dimensional submanifolds for solutions to stochastic partial differential equations (SPDEs) in the framework of the variational approach. For this purpose, we provide a connection to SPDEs in continuously embedded spaces.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on invariant manifolds for stochastic partial differential equations in the framework of the variational approach\",\"authors\":\"Rajeev Bhaskaran,&nbsp;Stefan Tappe\",\"doi\":\"10.1016/j.spl.2024.110282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we provide conditions for local invariance of finite dimensional submanifolds for solutions to stochastic partial differential equations (SPDEs) in the framework of the variational approach. For this purpose, we provide a connection to SPDEs in continuously embedded spaces.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们在变分法的框架内为随机偏微分方程(SPDE)的解提供了有限维子漫游的局部不变性条件。为此,我们提供了与连续嵌入空间中的 SPDEs 的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on invariant manifolds for stochastic partial differential equations in the framework of the variational approach
In this note we provide conditions for local invariance of finite dimensional submanifolds for solutions to stochastic partial differential equations (SPDEs) in the framework of the variational approach. For this purpose, we provide a connection to SPDEs in continuously embedded spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信