{"title":"用 FORMOSAT-3/COSMIC RO 数据和 GAIA 模式研究 2009 年冬季的零星 E 层增厚现象","authors":"Satoshi Andoh, Akinori Saito, Hiroyuki Shinagawa","doi":"10.1029/2024JA033026","DOIUrl":null,"url":null,"abstract":"<p>This study examines the role of winds in wintertime sporadic E layer intensification (WEsLI) in 2009 from a global viewpoint. Previous studies showed that sporadic E layer (EsL) intensity had increased for 20–30 days in some winters, although intense EsLs do not form generally in winter. A recent study found that vertical ion convergence (VIC) driven by intensified migrating semidiurnal (SW2) tides caused WEsLI at middle latitudes in 2009. However, no studies have investigated the global distributions and generation mechanisms of WEsLI in 2009. Herein, we employed FORMOSAT-3/COSMIC radio occultations to investigate the global distributions of WEsLI in 2009. Distributions of VIC driven by winds obtained from the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy were compared with global WEsLI distributions to elucidate the role of winds in WEsLI. We found that WEsLI in 2009 occurred at geomagnetic low/middle latitudes except between <span></span><math>\n <semantics>\n <mrow>\n <mn>60</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $60{}^{\\circ}$</annotation>\n </semantics></math>W and <span></span><math>\n <semantics>\n <mrow>\n <mn>80</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $80{}^{\\circ}$</annotation>\n </semantics></math>E. WEsLI was observed below 120 km altitudes, especially at 12–17 local times. WEsLI was attributable to VIC driven by SW2 tides, migrating diurnal tides, and eastward propagating diurnal tides with wavenumber 3. Tidal amplifications were possibly related to mesospheric/stratospheric atmospheric variations such as sudden stratospheric warming, zonal mean zonal winds, and quasi-biennial oscillations. WEsLI in 2009 is further evidence of the coupling between EsLs and mesospheric/stratospheric atmospheric variations through tidal modifications.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sporadic E Layer Intensification in the Winter of 2009 Examined by FORMOSAT-3/COSMIC RO Data and GAIA Model\",\"authors\":\"Satoshi Andoh, Akinori Saito, Hiroyuki Shinagawa\",\"doi\":\"10.1029/2024JA033026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the role of winds in wintertime sporadic E layer intensification (WEsLI) in 2009 from a global viewpoint. Previous studies showed that sporadic E layer (EsL) intensity had increased for 20–30 days in some winters, although intense EsLs do not form generally in winter. A recent study found that vertical ion convergence (VIC) driven by intensified migrating semidiurnal (SW2) tides caused WEsLI at middle latitudes in 2009. However, no studies have investigated the global distributions and generation mechanisms of WEsLI in 2009. Herein, we employed FORMOSAT-3/COSMIC radio occultations to investigate the global distributions of WEsLI in 2009. Distributions of VIC driven by winds obtained from the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy were compared with global WEsLI distributions to elucidate the role of winds in WEsLI. We found that WEsLI in 2009 occurred at geomagnetic low/middle latitudes except between <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>60</mn>\\n <mo>°</mo>\\n </mrow>\\n <annotation> $60{}^{\\\\circ}$</annotation>\\n </semantics></math>W and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>80</mn>\\n <mo>°</mo>\\n </mrow>\\n <annotation> $80{}^{\\\\circ}$</annotation>\\n </semantics></math>E. WEsLI was observed below 120 km altitudes, especially at 12–17 local times. WEsLI was attributable to VIC driven by SW2 tides, migrating diurnal tides, and eastward propagating diurnal tides with wavenumber 3. Tidal amplifications were possibly related to mesospheric/stratospheric atmospheric variations such as sudden stratospheric warming, zonal mean zonal winds, and quasi-biennial oscillations. WEsLI in 2009 is further evidence of the coupling between EsLs and mesospheric/stratospheric atmospheric variations through tidal modifications.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033026\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033026","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Sporadic E Layer Intensification in the Winter of 2009 Examined by FORMOSAT-3/COSMIC RO Data and GAIA Model
This study examines the role of winds in wintertime sporadic E layer intensification (WEsLI) in 2009 from a global viewpoint. Previous studies showed that sporadic E layer (EsL) intensity had increased for 20–30 days in some winters, although intense EsLs do not form generally in winter. A recent study found that vertical ion convergence (VIC) driven by intensified migrating semidiurnal (SW2) tides caused WEsLI at middle latitudes in 2009. However, no studies have investigated the global distributions and generation mechanisms of WEsLI in 2009. Herein, we employed FORMOSAT-3/COSMIC radio occultations to investigate the global distributions of WEsLI in 2009. Distributions of VIC driven by winds obtained from the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy were compared with global WEsLI distributions to elucidate the role of winds in WEsLI. We found that WEsLI in 2009 occurred at geomagnetic low/middle latitudes except between W and E. WEsLI was observed below 120 km altitudes, especially at 12–17 local times. WEsLI was attributable to VIC driven by SW2 tides, migrating diurnal tides, and eastward propagating diurnal tides with wavenumber 3. Tidal amplifications were possibly related to mesospheric/stratospheric atmospheric variations such as sudden stratospheric warming, zonal mean zonal winds, and quasi-biennial oscillations. WEsLI in 2009 is further evidence of the coupling between EsLs and mesospheric/stratospheric atmospheric variations through tidal modifications.