Sang Youn Chae, Noyoung Yoon, Minki Jun, Sung Hyun Hur, Myeongjae Lee, BongSoo Kim, Jin Young Kim, Eun Duck Park, Jong Hyeok Park, Oh Shim Joo
{"title":"研究在湿化学条件下合成的黄铜矿 CuInS2 光电极中的晶粒生长,以实现无偏光电化学水分离","authors":"Sang Youn Chae, Noyoung Yoon, Minki Jun, Sung Hyun Hur, Myeongjae Lee, BongSoo Kim, Jin Young Kim, Eun Duck Park, Jong Hyeok Park, Oh Shim Joo","doi":"10.1002/solr.202470201","DOIUrl":null,"url":null,"abstract":"<p><b>Photoelectrochemical Water Splitting</b>\n </p><p>In article number 2400518, Eun Duck Park, Jong Hyeok Park, Oh Shim Joo, and co-workers introduce a CuInS<sub>2</sub> photoelectrode synthesized by a scalable wet chemical spin-coating technique. Ag doping greatly spurred the grain growth of CuInS<sub>2</sub>, resulting in high photoelectrochemical activity. Bias-free water splitting was demonstrated in a photovoltaic–photoelectrochemical cell, showing the potential of this approach for efficient hydrogen production.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202470201","citationCount":"0","resultStr":"{\"title\":\"Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting\",\"authors\":\"Sang Youn Chae, Noyoung Yoon, Minki Jun, Sung Hyun Hur, Myeongjae Lee, BongSoo Kim, Jin Young Kim, Eun Duck Park, Jong Hyeok Park, Oh Shim Joo\",\"doi\":\"10.1002/solr.202470201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Photoelectrochemical Water Splitting</b>\\n </p><p>In article number 2400518, Eun Duck Park, Jong Hyeok Park, Oh Shim Joo, and co-workers introduce a CuInS<sub>2</sub> photoelectrode synthesized by a scalable wet chemical spin-coating technique. Ag doping greatly spurred the grain growth of CuInS<sub>2</sub>, resulting in high photoelectrochemical activity. Bias-free water splitting was demonstrated in a photovoltaic–photoelectrochemical cell, showing the potential of this approach for efficient hydrogen production.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 20\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202470201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202470201\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202470201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
Photoelectrochemical Water Splitting
In article number 2400518, Eun Duck Park, Jong Hyeok Park, Oh Shim Joo, and co-workers introduce a CuInS2 photoelectrode synthesized by a scalable wet chemical spin-coating technique. Ag doping greatly spurred the grain growth of CuInS2, resulting in high photoelectrochemical activity. Bias-free water splitting was demonstrated in a photovoltaic–photoelectrochemical cell, showing the potential of this approach for efficient hydrogen production.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.