Sekar Tri Wulan Amelia, W. Widiyastuti, Tantular Nurtono, Heru Setyawan, W. Widyastuti, Hosta Ardhyananta
{"title":"酸水解在将纤维素-I 转化为纤维素-II 以提高硝化纤维素作为高能聚合物的性能方面的作用","authors":"Sekar Tri Wulan Amelia, W. Widiyastuti, Tantular Nurtono, Heru Setyawan, W. Widyastuti, Hosta Ardhyananta","doi":"10.1007/s10570-024-06173-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose nitrate, commonly known as nitrocellulose (NC), is an energetic polymer with a broad function in industrial and military applications. The use of biomass waste for nitrocellulose production offers a promising solution to the growing demand for renewable and sustainable raw materials, addressing one of the most critical issues of recent decades. However, the product quality remains suboptimal, presenting one of the biggest challenges in developing NC production from biomass. Enhancing NC performance through the modification of cellulose crystal structures and allomorph is considered an excellent approach. Herein, the transformation of cellulose-I into cellulose-II was explored during the hydrolysis step to produce high-performance NC. The present study demonstrated that cellulose-II precursors effectively produced the highest-performance NC from the solid byproducts of avocado seed extraction (EAS), highlighting its promising potential for high-energy applications.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 16","pages":"9583 - 9595"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid hydrolysis roles in transformation of cellulose-I into cellulose-II for enhancing nitrocellulose performance as an energetic polymer\",\"authors\":\"Sekar Tri Wulan Amelia, W. Widiyastuti, Tantular Nurtono, Heru Setyawan, W. Widyastuti, Hosta Ardhyananta\",\"doi\":\"10.1007/s10570-024-06173-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellulose nitrate, commonly known as nitrocellulose (NC), is an energetic polymer with a broad function in industrial and military applications. The use of biomass waste for nitrocellulose production offers a promising solution to the growing demand for renewable and sustainable raw materials, addressing one of the most critical issues of recent decades. However, the product quality remains suboptimal, presenting one of the biggest challenges in developing NC production from biomass. Enhancing NC performance through the modification of cellulose crystal structures and allomorph is considered an excellent approach. Herein, the transformation of cellulose-I into cellulose-II was explored during the hydrolysis step to produce high-performance NC. The present study demonstrated that cellulose-II precursors effectively produced the highest-performance NC from the solid byproducts of avocado seed extraction (EAS), highlighting its promising potential for high-energy applications.</p></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"31 16\",\"pages\":\"9583 - 9595\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-024-06173-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06173-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Acid hydrolysis roles in transformation of cellulose-I into cellulose-II for enhancing nitrocellulose performance as an energetic polymer
Cellulose nitrate, commonly known as nitrocellulose (NC), is an energetic polymer with a broad function in industrial and military applications. The use of biomass waste for nitrocellulose production offers a promising solution to the growing demand for renewable and sustainable raw materials, addressing one of the most critical issues of recent decades. However, the product quality remains suboptimal, presenting one of the biggest challenges in developing NC production from biomass. Enhancing NC performance through the modification of cellulose crystal structures and allomorph is considered an excellent approach. Herein, the transformation of cellulose-I into cellulose-II was explored during the hydrolysis step to produce high-performance NC. The present study demonstrated that cellulose-II precursors effectively produced the highest-performance NC from the solid byproducts of avocado seed extraction (EAS), highlighting its promising potential for high-energy applications.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.