Yunong Yuan , Mohammad Nasri , Azadeh Manayi , Junying Zhang , Chunyong Wu , Tae-Joon Jeon , Lifeng Kang
{"title":"蚕丝纤维上的丝胶,是脱胶废物还是未来材料?","authors":"Yunong Yuan , Mohammad Nasri , Azadeh Manayi , Junying Zhang , Chunyong Wu , Tae-Joon Jeon , Lifeng Kang","doi":"10.1016/j.mtbio.2024.101306","DOIUrl":null,"url":null,"abstract":"<div><div>Silk is a fibrous biopolymer with a recorded history in the textile industries for centuries. This fibre is constituted of two different proteins: fibroin and sericin, of which the latter accounting for approximately 20–30 % of the silk mass. Silk sericin (SSER) was previously considered as a waste by-product in silk fibroin extraction. SSER has recently garnered significant scientific interest due to its extensive biological and pharmacological properties. These include antioxidant effects, biocompatibility, low immunogenicity, controlled biodegradability, and the ability to induce cell proliferation. This review covers studies about various aspects of this emerging material, namely, its general morphology, specific structure, molecular weight, features of different layers, and gene sequences. The impact of different extraction methods and the application of extracted SSER based on molecular weight are discussed. Additionally, the characteristic functional groups in the amino acids of sericin facilitate its applications in regenerative medicine, wound healing, drug delivery, textile, environment, and energy, in various forms like hydrogels, films, scaffolds, and conduits. SSER-based materials offer great potentials for multi-functional applications in the upcoming decades, showcasing adaptability for various functional uses and promising future technological advancements.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101306"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sericin coats of silk fibres, a degumming waste or future material?\",\"authors\":\"Yunong Yuan , Mohammad Nasri , Azadeh Manayi , Junying Zhang , Chunyong Wu , Tae-Joon Jeon , Lifeng Kang\",\"doi\":\"10.1016/j.mtbio.2024.101306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silk is a fibrous biopolymer with a recorded history in the textile industries for centuries. This fibre is constituted of two different proteins: fibroin and sericin, of which the latter accounting for approximately 20–30 % of the silk mass. Silk sericin (SSER) was previously considered as a waste by-product in silk fibroin extraction. SSER has recently garnered significant scientific interest due to its extensive biological and pharmacological properties. These include antioxidant effects, biocompatibility, low immunogenicity, controlled biodegradability, and the ability to induce cell proliferation. This review covers studies about various aspects of this emerging material, namely, its general morphology, specific structure, molecular weight, features of different layers, and gene sequences. The impact of different extraction methods and the application of extracted SSER based on molecular weight are discussed. Additionally, the characteristic functional groups in the amino acids of sericin facilitate its applications in regenerative medicine, wound healing, drug delivery, textile, environment, and energy, in various forms like hydrogels, films, scaffolds, and conduits. SSER-based materials offer great potentials for multi-functional applications in the upcoming decades, showcasing adaptability for various functional uses and promising future technological advancements.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101306\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003673\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003673","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sericin coats of silk fibres, a degumming waste or future material?
Silk is a fibrous biopolymer with a recorded history in the textile industries for centuries. This fibre is constituted of two different proteins: fibroin and sericin, of which the latter accounting for approximately 20–30 % of the silk mass. Silk sericin (SSER) was previously considered as a waste by-product in silk fibroin extraction. SSER has recently garnered significant scientific interest due to its extensive biological and pharmacological properties. These include antioxidant effects, biocompatibility, low immunogenicity, controlled biodegradability, and the ability to induce cell proliferation. This review covers studies about various aspects of this emerging material, namely, its general morphology, specific structure, molecular weight, features of different layers, and gene sequences. The impact of different extraction methods and the application of extracted SSER based on molecular weight are discussed. Additionally, the characteristic functional groups in the amino acids of sericin facilitate its applications in regenerative medicine, wound healing, drug delivery, textile, environment, and energy, in various forms like hydrogels, films, scaffolds, and conduits. SSER-based materials offer great potentials for multi-functional applications in the upcoming decades, showcasing adaptability for various functional uses and promising future technological advancements.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).