走向滑动断层运动下的山岭隧道力学行为与对策试验研究

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Zhen Wang , Zilan Zhong , Mi Zhao , Xiuli Du , Jingqi Huang , Hongru Wang
{"title":"走向滑动断层运动下的山岭隧道力学行为与对策试验研究","authors":"Zhen Wang ,&nbsp;Zilan Zhong ,&nbsp;Mi Zhao ,&nbsp;Xiuli Du ,&nbsp;Jingqi Huang ,&nbsp;Hongru Wang","doi":"10.1016/j.undsp.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>In the seismic mountainous regions such as western China, it is usuallly inevitable to construct tunnels near active fault zones. Those fault-crossing tunnel structures can be extremely vulnerable during earthquakes. Extensive experimental studies have been conducted on the response of continuous mountain tunnels under reverse and normal fault movements, limited experimental investigations are available in the literatures on mountain tunnels with special structural measures crossing strike-slip faults. In this study, a new experimental facility for simulating the movement of strike-slip fault was developed, accounting for the spatial deformation characteristics of large active fault zones. Two groups of sandbox experiment were performed on the scaled tunnel models to investigate the evolution of ground deformation and surface rupture subjected to strike-slip fault motion and its impact on a water conveyance tunnel. The nonlinear response and damage mechanism of continuous tunnels and tunnels incorporated with specially designed articulated system were examined. The test results show that most of slip between stationary block and moving block occurred within the fault core, and significant surface ruptures are observed along the fault strike direction at the fault damage zone. The continuous tunnel undergoes significant shrinkage deformation and diagonal-shear failure near the slip surface and resulted in localized collapse of tunnel lining. The segments of articulated system tunnel suffer a significant horizontal deflection of about 5°, which results in opening and misalignment at the flexible joint. The width of the damaged zone of the articulated system tunnel is about 0.44 to 0.57 times that of the continuous tunnel. Compared to continuous tunnels, the articulated design significantly reduces the axial strain response of the tunnel lining, but increases the circumferential tensile strain at the tunnel crown and invert. It is concluded that articulated design provides an effective measure to reduce the extent of damage in mountain tunnel.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 1-21"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement\",\"authors\":\"Zhen Wang ,&nbsp;Zilan Zhong ,&nbsp;Mi Zhao ,&nbsp;Xiuli Du ,&nbsp;Jingqi Huang ,&nbsp;Hongru Wang\",\"doi\":\"10.1016/j.undsp.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the seismic mountainous regions such as western China, it is usuallly inevitable to construct tunnels near active fault zones. Those fault-crossing tunnel structures can be extremely vulnerable during earthquakes. Extensive experimental studies have been conducted on the response of continuous mountain tunnels under reverse and normal fault movements, limited experimental investigations are available in the literatures on mountain tunnels with special structural measures crossing strike-slip faults. In this study, a new experimental facility for simulating the movement of strike-slip fault was developed, accounting for the spatial deformation characteristics of large active fault zones. Two groups of sandbox experiment were performed on the scaled tunnel models to investigate the evolution of ground deformation and surface rupture subjected to strike-slip fault motion and its impact on a water conveyance tunnel. The nonlinear response and damage mechanism of continuous tunnels and tunnels incorporated with specially designed articulated system were examined. The test results show that most of slip between stationary block and moving block occurred within the fault core, and significant surface ruptures are observed along the fault strike direction at the fault damage zone. The continuous tunnel undergoes significant shrinkage deformation and diagonal-shear failure near the slip surface and resulted in localized collapse of tunnel lining. The segments of articulated system tunnel suffer a significant horizontal deflection of about 5°, which results in opening and misalignment at the flexible joint. The width of the damaged zone of the articulated system tunnel is about 0.44 to 0.57 times that of the continuous tunnel. Compared to continuous tunnels, the articulated design significantly reduces the axial strain response of the tunnel lining, but increases the circumferential tensile strain at the tunnel crown and invert. It is concluded that articulated design provides an effective measure to reduce the extent of damage in mountain tunnel.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"21 \",\"pages\":\"Pages 1-21\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246796742400103X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246796742400103X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在中国西部等地震多发山区,不可避免地要在活动断层带附近修建隧道。这些穿越断层的隧道结构在地震中非常脆弱。关于连续山岭隧道在逆断层和正断层运动下的响应,已经进行了大量的实验研究,但关于具有特殊结构措施的穿越走向滑动断层的山岭隧道的实验研究还很有限。本研究根据大型活动断层带的空间变形特征,开发了一种新的模拟走向滑动断层运动的实验设施。在按比例制作的隧道模型上进行了两组沙盘实验,研究了走向滑动断层运动时地面变形和地表破裂的演变过程及其对输水隧道的影响。试验研究了连续隧道和采用特殊设计的铰接系统的隧道的非线性响应和破坏机理。试验结果表明,静止块体和移动块体之间的大部分滑移发生在断层核心区,在断层破坏区沿断层走向观察到明显的表面破裂。连续隧道在滑移面附近发生了明显的收缩变形和斜切破坏,导致隧道衬砌局部坍塌。铰接式系统隧道的各段发生了约 5° 的显著水平变形,导致柔性连接处开裂和错位。铰接式隧道受损区的宽度约为连续式隧道的 0.44 至 0.57 倍。与连续隧道相比,铰接式设计大大降低了隧道衬砌的轴向应变响应,但增加了隧道顶部和反向的周向拉伸应变。结论是,铰接式设计是减少山区隧道损坏程度的有效措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement
In the seismic mountainous regions such as western China, it is usuallly inevitable to construct tunnels near active fault zones. Those fault-crossing tunnel structures can be extremely vulnerable during earthquakes. Extensive experimental studies have been conducted on the response of continuous mountain tunnels under reverse and normal fault movements, limited experimental investigations are available in the literatures on mountain tunnels with special structural measures crossing strike-slip faults. In this study, a new experimental facility for simulating the movement of strike-slip fault was developed, accounting for the spatial deformation characteristics of large active fault zones. Two groups of sandbox experiment were performed on the scaled tunnel models to investigate the evolution of ground deformation and surface rupture subjected to strike-slip fault motion and its impact on a water conveyance tunnel. The nonlinear response and damage mechanism of continuous tunnels and tunnels incorporated with specially designed articulated system were examined. The test results show that most of slip between stationary block and moving block occurred within the fault core, and significant surface ruptures are observed along the fault strike direction at the fault damage zone. The continuous tunnel undergoes significant shrinkage deformation and diagonal-shear failure near the slip surface and resulted in localized collapse of tunnel lining. The segments of articulated system tunnel suffer a significant horizontal deflection of about 5°, which results in opening and misalignment at the flexible joint. The width of the damaged zone of the articulated system tunnel is about 0.44 to 0.57 times that of the continuous tunnel. Compared to continuous tunnels, the articulated design significantly reduces the axial strain response of the tunnel lining, but increases the circumferential tensile strain at the tunnel crown and invert. It is concluded that articulated design provides an effective measure to reduce the extent of damage in mountain tunnel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信