{"title":"走向滑动断层运动下的山岭隧道力学行为与对策试验研究","authors":"","doi":"10.1016/j.undsp.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>In the seismic mountainous regions such as western China, it is usuallly inevitable to construct tunnels near active fault zones. Those fault-crossing tunnel structures can be extremely vulnerable during earthquakes. Extensive experimental studies have been conducted on the response of continuous mountain tunnels under reverse and normal fault movements, limited experimental investigations are available in the literatures on mountain tunnels with special structural measures crossing strike-slip faults. In this study, a new experimental facility for simulating the movement of strike-slip fault was developed, accounting for the spatial deformation characteristics of large active fault zones. Two groups of sandbox experiment were performed on the scaled tunnel models to investigate the evolution of ground deformation and surface rupture subjected to strike-slip fault motion and its impact on a water conveyance tunnel. The nonlinear response and damage mechanism of continuous tunnels and tunnels incorporated with specially designed articulated system were examined. The test results show that most of slip between stationary block and moving block occurred within the fault core, and significant surface ruptures are observed along the fault strike direction at the fault damage zone. The continuous tunnel undergoes significant shrinkage deformation and diagonal-shear failure near the slip surface and resulted in localized collapse of tunnel lining. The segments of articulated system tunnel suffer a significant horizontal deflection of about 5°, which results in opening and misalignment at the flexible joint. The width of the damaged zone of the articulated system tunnel is about 0.44 to 0.57 times that of the continuous tunnel. Compared to continuous tunnels, the articulated design significantly reduces the axial strain response of the tunnel lining, but increases the circumferential tensile strain at the tunnel crown and invert. It is concluded that articulated design provides an effective measure to reduce the extent of damage in mountain tunnel.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement\",\"authors\":\"\",\"doi\":\"10.1016/j.undsp.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the seismic mountainous regions such as western China, it is usuallly inevitable to construct tunnels near active fault zones. Those fault-crossing tunnel structures can be extremely vulnerable during earthquakes. Extensive experimental studies have been conducted on the response of continuous mountain tunnels under reverse and normal fault movements, limited experimental investigations are available in the literatures on mountain tunnels with special structural measures crossing strike-slip faults. In this study, a new experimental facility for simulating the movement of strike-slip fault was developed, accounting for the spatial deformation characteristics of large active fault zones. Two groups of sandbox experiment were performed on the scaled tunnel models to investigate the evolution of ground deformation and surface rupture subjected to strike-slip fault motion and its impact on a water conveyance tunnel. The nonlinear response and damage mechanism of continuous tunnels and tunnels incorporated with specially designed articulated system were examined. The test results show that most of slip between stationary block and moving block occurred within the fault core, and significant surface ruptures are observed along the fault strike direction at the fault damage zone. The continuous tunnel undergoes significant shrinkage deformation and diagonal-shear failure near the slip surface and resulted in localized collapse of tunnel lining. The segments of articulated system tunnel suffer a significant horizontal deflection of about 5°, which results in opening and misalignment at the flexible joint. The width of the damaged zone of the articulated system tunnel is about 0.44 to 0.57 times that of the continuous tunnel. Compared to continuous tunnels, the articulated design significantly reduces the axial strain response of the tunnel lining, but increases the circumferential tensile strain at the tunnel crown and invert. It is concluded that articulated design provides an effective measure to reduce the extent of damage in mountain tunnel.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246796742400103X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246796742400103X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement
In the seismic mountainous regions such as western China, it is usuallly inevitable to construct tunnels near active fault zones. Those fault-crossing tunnel structures can be extremely vulnerable during earthquakes. Extensive experimental studies have been conducted on the response of continuous mountain tunnels under reverse and normal fault movements, limited experimental investigations are available in the literatures on mountain tunnels with special structural measures crossing strike-slip faults. In this study, a new experimental facility for simulating the movement of strike-slip fault was developed, accounting for the spatial deformation characteristics of large active fault zones. Two groups of sandbox experiment were performed on the scaled tunnel models to investigate the evolution of ground deformation and surface rupture subjected to strike-slip fault motion and its impact on a water conveyance tunnel. The nonlinear response and damage mechanism of continuous tunnels and tunnels incorporated with specially designed articulated system were examined. The test results show that most of slip between stationary block and moving block occurred within the fault core, and significant surface ruptures are observed along the fault strike direction at the fault damage zone. The continuous tunnel undergoes significant shrinkage deformation and diagonal-shear failure near the slip surface and resulted in localized collapse of tunnel lining. The segments of articulated system tunnel suffer a significant horizontal deflection of about 5°, which results in opening and misalignment at the flexible joint. The width of the damaged zone of the articulated system tunnel is about 0.44 to 0.57 times that of the continuous tunnel. Compared to continuous tunnels, the articulated design significantly reduces the axial strain response of the tunnel lining, but increases the circumferential tensile strain at the tunnel crown and invert. It is concluded that articulated design provides an effective measure to reduce the extent of damage in mountain tunnel.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.