Asad S. Albostami , Safaa A. Mohamad , Saif Alzabeebee , Rwayda Kh.S. Al-Hamd , Baidaa Al-Bander
{"title":"钢纤维加固板的冲剪优化设计:机器学习与进化预测模型","authors":"Asad S. Albostami , Safaa A. Mohamad , Saif Alzabeebee , Rwayda Kh.S. Al-Hamd , Baidaa Al-Bander","doi":"10.1016/j.engstruct.2024.119150","DOIUrl":null,"url":null,"abstract":"<div><div>This research paper focuses on utilizing Artificial Neural Networks (ANN), Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR), and Gene Expression Programming (GEP) to predict the punching shear strength of Steel Fibre-Reinforced Concrete (SFRC) slabs.</div><div>In order to formulate predictions, research and analysis were carried out making use of a dataset, this dataset included several parameters that impact on punching shear strength, including SFRC slabs longitudinally and transversely, using ANN, GEP, and MOGA-EPR methods. The developed models exhibited very good performance, as the soft computing techniques (GEP and MOGA-EPR) achieved <em>R</em>² values of 0.91 to 0.93, while the ANN technique was higher at 0.95. Furthermore, two case studies were incorporated to carry out cost analyses of the models in real-world applications. It was shown that the efficiency of the Machine Learning (ML) models in reducing the costs of materials is relatively high, as they were capable of better predictions than the standard methods employed by the codes.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"322 ","pages":"Article 119150"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized punching shear design in steel fiber-reinforced slabs: Machine learning vs. evolutionary prediction models\",\"authors\":\"Asad S. Albostami , Safaa A. Mohamad , Saif Alzabeebee , Rwayda Kh.S. Al-Hamd , Baidaa Al-Bander\",\"doi\":\"10.1016/j.engstruct.2024.119150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research paper focuses on utilizing Artificial Neural Networks (ANN), Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR), and Gene Expression Programming (GEP) to predict the punching shear strength of Steel Fibre-Reinforced Concrete (SFRC) slabs.</div><div>In order to formulate predictions, research and analysis were carried out making use of a dataset, this dataset included several parameters that impact on punching shear strength, including SFRC slabs longitudinally and transversely, using ANN, GEP, and MOGA-EPR methods. The developed models exhibited very good performance, as the soft computing techniques (GEP and MOGA-EPR) achieved <em>R</em>² values of 0.91 to 0.93, while the ANN technique was higher at 0.95. Furthermore, two case studies were incorporated to carry out cost analyses of the models in real-world applications. It was shown that the efficiency of the Machine Learning (ML) models in reducing the costs of materials is relatively high, as they were capable of better predictions than the standard methods employed by the codes.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"322 \",\"pages\":\"Article 119150\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141029624017127\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624017127","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Optimized punching shear design in steel fiber-reinforced slabs: Machine learning vs. evolutionary prediction models
This research paper focuses on utilizing Artificial Neural Networks (ANN), Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR), and Gene Expression Programming (GEP) to predict the punching shear strength of Steel Fibre-Reinforced Concrete (SFRC) slabs.
In order to formulate predictions, research and analysis were carried out making use of a dataset, this dataset included several parameters that impact on punching shear strength, including SFRC slabs longitudinally and transversely, using ANN, GEP, and MOGA-EPR methods. The developed models exhibited very good performance, as the soft computing techniques (GEP and MOGA-EPR) achieved R² values of 0.91 to 0.93, while the ANN technique was higher at 0.95. Furthermore, two case studies were incorporated to carry out cost analyses of the models in real-world applications. It was shown that the efficiency of the Machine Learning (ML) models in reducing the costs of materials is relatively high, as they were capable of better predictions than the standard methods employed by the codes.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.