Pushuang Xing , Cong Li , Yixin Chen, Rong-Lan Zhang
{"title":"30%PMoV2@MOF@mSiO2 (MOF = MIL-101、HKUST-1、UiO-67、ZIF-8)催化剂的制备及其氧化脱硫性能","authors":"Pushuang Xing , Cong Li , Yixin Chen, Rong-Lan Zhang","doi":"10.1016/j.mcat.2024.114613","DOIUrl":null,"url":null,"abstract":"<div><div>PMoV<sub>2</sub> was encapsulated in four MOFs (MIL-101, HKUST-1, UiO-67, ZIF-8) with different cavity sizes and window sizes using a hydrothermal synthesis method. Then, a layer of mesoporous silica was coated on the surface of the MOFs to obtain four designed three-layer encapsulated catalysts 30%PMoV<sub>2</sub>@MOF@mSiO<sub>2</sub>. The physicochemical properties of the catalysts were characterized through various characterization methods, and the influence of different MOF window sizes of the four catalysts on the removal rate of four thiophene sulfides was investigated. The optimal reaction conditions were also explored for the optimal catalyst. The results indicate that under simulated fuel of 2400 ppm, 30%PMoV<sub>2</sub>@UiO-67@mSiO<sub>2</sub> owns the highest catalytic activity. Under optimal conditions, the total removal rate of four thiophene compounds was 91.52 %, and after ten cycles, the efficiency could still reach 86.24 %. This is attributed to the sufficient cavity size of UiO-67, which provides assurance for the loading of PMoV<sub>2</sub> and the large window size, making it possible for the smooth reaction between sulfides and PMoV<sub>2</sub>.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114613"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of 30%PMoV2@MOF@mSiO2 (MOF = MIL-101, HKUST-1, UiO-67, ZIF-8) catalysts and their oxidative desulfurization performance\",\"authors\":\"Pushuang Xing , Cong Li , Yixin Chen, Rong-Lan Zhang\",\"doi\":\"10.1016/j.mcat.2024.114613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>PMoV<sub>2</sub> was encapsulated in four MOFs (MIL-101, HKUST-1, UiO-67, ZIF-8) with different cavity sizes and window sizes using a hydrothermal synthesis method. Then, a layer of mesoporous silica was coated on the surface of the MOFs to obtain four designed three-layer encapsulated catalysts 30%PMoV<sub>2</sub>@MOF@mSiO<sub>2</sub>. The physicochemical properties of the catalysts were characterized through various characterization methods, and the influence of different MOF window sizes of the four catalysts on the removal rate of four thiophene sulfides was investigated. The optimal reaction conditions were also explored for the optimal catalyst. The results indicate that under simulated fuel of 2400 ppm, 30%PMoV<sub>2</sub>@UiO-67@mSiO<sub>2</sub> owns the highest catalytic activity. Under optimal conditions, the total removal rate of four thiophene compounds was 91.52 %, and after ten cycles, the efficiency could still reach 86.24 %. This is attributed to the sufficient cavity size of UiO-67, which provides assurance for the loading of PMoV<sub>2</sub> and the large window size, making it possible for the smooth reaction between sulfides and PMoV<sub>2</sub>.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114613\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124007958\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007958","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation of 30%PMoV2@MOF@mSiO2 (MOF = MIL-101, HKUST-1, UiO-67, ZIF-8) catalysts and their oxidative desulfurization performance
PMoV2 was encapsulated in four MOFs (MIL-101, HKUST-1, UiO-67, ZIF-8) with different cavity sizes and window sizes using a hydrothermal synthesis method. Then, a layer of mesoporous silica was coated on the surface of the MOFs to obtain four designed three-layer encapsulated catalysts 30%PMoV2@MOF@mSiO2. The physicochemical properties of the catalysts were characterized through various characterization methods, and the influence of different MOF window sizes of the four catalysts on the removal rate of four thiophene sulfides was investigated. The optimal reaction conditions were also explored for the optimal catalyst. The results indicate that under simulated fuel of 2400 ppm, 30%PMoV2@UiO-67@mSiO2 owns the highest catalytic activity. Under optimal conditions, the total removal rate of four thiophene compounds was 91.52 %, and after ten cycles, the efficiency could still reach 86.24 %. This is attributed to the sufficient cavity size of UiO-67, which provides assurance for the loading of PMoV2 and the large window size, making it possible for the smooth reaction between sulfides and PMoV2.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods