Subhashree Mishra , Neha Kamal , Arup Kumar De , Indrajit Sinha , Amulya Prasad Panda , R.K. Dey , Rajaram Bal
{"title":"在工业催化中使用红泥(MRM):利用 Ni-MRM 将生物质衍生的糠醛选择性转化为糠醇--制备、表征和活性研究--利用 DFT 阐明氢化机理","authors":"Subhashree Mishra , Neha Kamal , Arup Kumar De , Indrajit Sinha , Amulya Prasad Panda , R.K. Dey , Rajaram Bal","doi":"10.1016/j.mcat.2024.114617","DOIUrl":null,"url":null,"abstract":"<div><div>Conversion of furfural (FFL) to furfuryl alcohol (FOL) using nickel loaded modified red mud (Ni-MRM) was developed with an aim to eliminate toxic Cu-Cr catalyst or precious metal catalyst currently used industrially. Ni-MRM was characterized using various advanced instruments such as XRD, TEM, TPR, BET and XPS. Thermal stability of the material was computed using Kissinger-Akahira-Sonuse (KAS) model. Ni-MRM catalytic activity was studied with variation of parameters. A 15 % Ni-loading on MRM (Ni(15 %)-MRM) shows significant product selectivity (>90 %) in optimized reaction conditions. Density functional theory (DFT) was used for calculation of adsorption energy, charge of the metal at the material active sites. The theoretical calculation shows that H<sub>2</sub> molecule adsorbed upon electron rich Ni surface facilitate bond cleavage to initiate the reaction with adsorbed furfural molecule. Ni-MRM could be reused without significant loss of material catalytic activity for production of furfuryl alcohol. The work also shows effective utilization of properties of red mud for selective transformation of furfural, a bio-renewable material, to value added products.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114617"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of red-mud (MRM) in industrial catalysis: Selective conversion of biomass derived furfural to furfuryl alcohol using Ni-MRM – preparation, characterization and activity studies – elucidating mechanism of hydrogenation using DFT\",\"authors\":\"Subhashree Mishra , Neha Kamal , Arup Kumar De , Indrajit Sinha , Amulya Prasad Panda , R.K. Dey , Rajaram Bal\",\"doi\":\"10.1016/j.mcat.2024.114617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conversion of furfural (FFL) to furfuryl alcohol (FOL) using nickel loaded modified red mud (Ni-MRM) was developed with an aim to eliminate toxic Cu-Cr catalyst or precious metal catalyst currently used industrially. Ni-MRM was characterized using various advanced instruments such as XRD, TEM, TPR, BET and XPS. Thermal stability of the material was computed using Kissinger-Akahira-Sonuse (KAS) model. Ni-MRM catalytic activity was studied with variation of parameters. A 15 % Ni-loading on MRM (Ni(15 %)-MRM) shows significant product selectivity (>90 %) in optimized reaction conditions. Density functional theory (DFT) was used for calculation of adsorption energy, charge of the metal at the material active sites. The theoretical calculation shows that H<sub>2</sub> molecule adsorbed upon electron rich Ni surface facilitate bond cleavage to initiate the reaction with adsorbed furfural molecule. Ni-MRM could be reused without significant loss of material catalytic activity for production of furfuryl alcohol. The work also shows effective utilization of properties of red mud for selective transformation of furfural, a bio-renewable material, to value added products.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114617\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124007995\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007995","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Use of red-mud (MRM) in industrial catalysis: Selective conversion of biomass derived furfural to furfuryl alcohol using Ni-MRM – preparation, characterization and activity studies – elucidating mechanism of hydrogenation using DFT
Conversion of furfural (FFL) to furfuryl alcohol (FOL) using nickel loaded modified red mud (Ni-MRM) was developed with an aim to eliminate toxic Cu-Cr catalyst or precious metal catalyst currently used industrially. Ni-MRM was characterized using various advanced instruments such as XRD, TEM, TPR, BET and XPS. Thermal stability of the material was computed using Kissinger-Akahira-Sonuse (KAS) model. Ni-MRM catalytic activity was studied with variation of parameters. A 15 % Ni-loading on MRM (Ni(15 %)-MRM) shows significant product selectivity (>90 %) in optimized reaction conditions. Density functional theory (DFT) was used for calculation of adsorption energy, charge of the metal at the material active sites. The theoretical calculation shows that H2 molecule adsorbed upon electron rich Ni surface facilitate bond cleavage to initiate the reaction with adsorbed furfural molecule. Ni-MRM could be reused without significant loss of material catalytic activity for production of furfuryl alcohol. The work also shows effective utilization of properties of red mud for selective transformation of furfural, a bio-renewable material, to value added products.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods