{"title":"一种用于协同催化去除氯苯和氮氧化物的优异 Mn5CeTi5Ox 催化剂:性能提升和机理研究","authors":"Bo Yang, Liuying Wang, Qiuxiang Gu, Yujie Lei, Qiong Huang, Mindong Chen","doi":"10.1016/j.mcat.2024.114634","DOIUrl":null,"url":null,"abstract":"<div><div>The transition metal titanium-doped Mn-Ce-O<sub>x</sub> catalysts catalyst were employed to achieve synergetic removal of NO and CB at 180–220 °C. The Mn<sub>5</sub>CeTi<sub>5</sub>O<sub>x</sub> catalyst with a molar ratio of Mn/Ce/Ti = 5:1:5 exhibits excellent activity, and the NO<sub>x</sub> and CB removal efficiencies reach 96 % and 89 % at 160–220 °C, respectively. The selectivity for N<sub>2</sub> and CO<sub>2</sub> are 93 % and 78 %, respectively. The N<sub>2</sub>-physisorption, NH<sub>3</sub>-TPD, H<sub>2</sub>-TPR and XPS results show that Ti doping makes the catalyst possess a mesoporous structure, suitable particle sizes, and excellent redox and Lewis site properties. All of these features contribute to the observed high NO and CB removal efficiency. The synergetic removal of CB and NO over Mn<sub>5</sub>CeTi<sub>5</sub>O<sub>x</sub> results from the synergistic catalysis between the redox and the solid acid. On the one hand, in the synergistic removal process, CB and NH<sub>3</sub> are competitively adsorbed on the catalyst surface, resulting in a decrease in the NH<sub>3</sub>-SCR activity. On the other hand, the removal of NO and CB has a synergetic effect. The byproduct NO<sub>2</sub> produced by the NH<sub>3</sub>-SCR reaction promotes the oxidation of CB, which is beneficial for CB removal. Moreover, the consumption of NO<sub>2</sub> indirectly promotes the NH<sub>3</sub>-SCR reaction, which partially compensates for the decrease in the NO removal efficiency caused by competitive adsorption between NH<sub>3</sub> and CB. Ti doping promotes the participation of the SCR byproduct NO<sub>2</sub> in the CBCO reaction and promotes the formation of maleic acid, an intermediate product of CB oxidation. In summary, the Mn<sub>5</sub>CeTi<sub>5</sub>O<sub>x</sub> catalyst exhibits good activity for the synergistic removal of NO<sub>x</sub> and CB and is a promising candidate for the effective and economical removal of NO and CB during waste incineration.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114634"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A superior Mn5CeTi5Ox catalysts for synergistic catalytic removal of chlorobenzene and NOx: Performance enhancement and mechanism studies\",\"authors\":\"Bo Yang, Liuying Wang, Qiuxiang Gu, Yujie Lei, Qiong Huang, Mindong Chen\",\"doi\":\"10.1016/j.mcat.2024.114634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition metal titanium-doped Mn-Ce-O<sub>x</sub> catalysts catalyst were employed to achieve synergetic removal of NO and CB at 180–220 °C. The Mn<sub>5</sub>CeTi<sub>5</sub>O<sub>x</sub> catalyst with a molar ratio of Mn/Ce/Ti = 5:1:5 exhibits excellent activity, and the NO<sub>x</sub> and CB removal efficiencies reach 96 % and 89 % at 160–220 °C, respectively. The selectivity for N<sub>2</sub> and CO<sub>2</sub> are 93 % and 78 %, respectively. The N<sub>2</sub>-physisorption, NH<sub>3</sub>-TPD, H<sub>2</sub>-TPR and XPS results show that Ti doping makes the catalyst possess a mesoporous structure, suitable particle sizes, and excellent redox and Lewis site properties. All of these features contribute to the observed high NO and CB removal efficiency. The synergetic removal of CB and NO over Mn<sub>5</sub>CeTi<sub>5</sub>O<sub>x</sub> results from the synergistic catalysis between the redox and the solid acid. On the one hand, in the synergistic removal process, CB and NH<sub>3</sub> are competitively adsorbed on the catalyst surface, resulting in a decrease in the NH<sub>3</sub>-SCR activity. On the other hand, the removal of NO and CB has a synergetic effect. The byproduct NO<sub>2</sub> produced by the NH<sub>3</sub>-SCR reaction promotes the oxidation of CB, which is beneficial for CB removal. Moreover, the consumption of NO<sub>2</sub> indirectly promotes the NH<sub>3</sub>-SCR reaction, which partially compensates for the decrease in the NO removal efficiency caused by competitive adsorption between NH<sub>3</sub> and CB. Ti doping promotes the participation of the SCR byproduct NO<sub>2</sub> in the CBCO reaction and promotes the formation of maleic acid, an intermediate product of CB oxidation. In summary, the Mn<sub>5</sub>CeTi<sub>5</sub>O<sub>x</sub> catalyst exhibits good activity for the synergistic removal of NO<sub>x</sub> and CB and is a promising candidate for the effective and economical removal of NO and CB during waste incineration.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114634\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124008162\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008162","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A superior Mn5CeTi5Ox catalysts for synergistic catalytic removal of chlorobenzene and NOx: Performance enhancement and mechanism studies
The transition metal titanium-doped Mn-Ce-Ox catalysts catalyst were employed to achieve synergetic removal of NO and CB at 180–220 °C. The Mn5CeTi5Ox catalyst with a molar ratio of Mn/Ce/Ti = 5:1:5 exhibits excellent activity, and the NOx and CB removal efficiencies reach 96 % and 89 % at 160–220 °C, respectively. The selectivity for N2 and CO2 are 93 % and 78 %, respectively. The N2-physisorption, NH3-TPD, H2-TPR and XPS results show that Ti doping makes the catalyst possess a mesoporous structure, suitable particle sizes, and excellent redox and Lewis site properties. All of these features contribute to the observed high NO and CB removal efficiency. The synergetic removal of CB and NO over Mn5CeTi5Ox results from the synergistic catalysis between the redox and the solid acid. On the one hand, in the synergistic removal process, CB and NH3 are competitively adsorbed on the catalyst surface, resulting in a decrease in the NH3-SCR activity. On the other hand, the removal of NO and CB has a synergetic effect. The byproduct NO2 produced by the NH3-SCR reaction promotes the oxidation of CB, which is beneficial for CB removal. Moreover, the consumption of NO2 indirectly promotes the NH3-SCR reaction, which partially compensates for the decrease in the NO removal efficiency caused by competitive adsorption between NH3 and CB. Ti doping promotes the participation of the SCR byproduct NO2 in the CBCO reaction and promotes the formation of maleic acid, an intermediate product of CB oxidation. In summary, the Mn5CeTi5Ox catalyst exhibits good activity for the synergistic removal of NOx and CB and is a promising candidate for the effective and economical removal of NO and CB during waste incineration.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods